On Modeling and Simulation of Industrial Fiber Spinning Processes: Diffusive Effects, Electrified Jets and Turbulent Airflows von Manuel Wieland | ISBN 9783839615737

On Modeling and Simulation of Industrial Fiber Spinning Processes: Diffusive Effects, Electrified Jets and Turbulent Airflows

von Manuel Wieland
Buchcover On Modeling and Simulation of Industrial Fiber Spinning Processes: Diffusive Effects, Electrified Jets and Turbulent Airflows | Manuel Wieland | EAN 9783839615737 | ISBN 3-8396-1573-9 | ISBN 978-3-8396-1573-7

On Modeling and Simulation of Industrial Fiber Spinning Processes: Diffusive Effects, Electrified Jets and Turbulent Airflows

von Manuel Wieland
In the technical textile industry models and simulations of underlying manufacturing processes increasingly gain attention in order to optimize existing spinning devices. Since the underlying three-dimensional multiscale-multiphase problems require unfeasible computation times, direct numerical simulations of the fiber dynamics are not practical. Thus, the special Cosserat theory with one-dimensional descriptions of the fibers builds our model basis. In this work we suitably extended this model basis to describe all physically relevant effects present in industrial setups and develop problem tailored numerical solution strategies. To show the capability and efficiency of our model-simulation framework we investigate three industrial spinning processes: dry spinning, electrospinning, and melt-blowing. For the first time in literature we present simulation results of multiple dry spun fibers in a two-way interaction with an outer airflow, a detailed investigation of the fiber's whipping movement present in electrospinning utilizing a rotating reference frame as well as simulation results of melt-blown fibers including turbulent airflow effects leading to realistically thin fibers.