Cosmology and Gravitation von Peter G. Bergmann | Spin, Torsion, Rotation, and Supergravity | ISBN 9780306404788

Cosmology and Gravitation

Spin, Torsion, Rotation, and Supergravity

von Peter G. Bergmann und Venzo De Sabbata
Mitwirkende
Autor / AutorinPeter G. Bergmann
Autor / AutorinVenzo De Sabbata
Buchcover Cosmology and Gravitation | Peter G. Bergmann | EAN 9780306404788 | ISBN 0-306-40478-8 | ISBN 978-0-306-40478-8

Cosmology and Gravitation

Spin, Torsion, Rotation, and Supergravity

von Peter G. Bergmann und Venzo De Sabbata
Mitwirkende
Autor / AutorinPeter G. Bergmann
Autor / AutorinVenzo De Sabbata

Inhaltsverzeichnis

  • I: Theories with Torsion.
  • Generalities on Geometric Theories of Gravitation.
  • Four Lectures on Poincaré Gauge Field Theory.
  • The Macroscopic Limit of the Poincaré Gauge Field Theory of Gravitation.
  • QuasiClassical Limit of the Dirac Equation and the Equivalence Principle in the Riemann-Cartan Geometry.
  • Contracted Bianchi Identities and Conservation Laws in Poincaré Gauge Theories of Gravity.
  • The Gauge Symmetries of Gravitation.
  • The Motion of Test-Particles in Non-Riemannian Space-Time.
  • Torsion and Strong Gravity in The Realm of Elementary Particles and Cosmological Physics.
  • III: Supersymmetries, Twistors and Other Symmetry Groups.
  • The Fading World Point.
  • Superalgebras, Supergroups, and Geometric Gauging.
  • Four Lectures at the 1979 Erice School on Spin, Torsion, Rotation, and Supergravity.
  • Self Dual Fields.
  • An Introduction to Complex Manifolds.
  • A Brief Outline of Twistor Theory.
  • III: Experimental Relativity and Other Topics.
  • Experimental Gravitation with Measurements Made from Within a Planetary System.
  • Tests of General Relativity at the Quantum Level.
  • The Mass-Angular Momentum-Diagram of Astronomical Objects.
  • Bimetric General Relativity Theory.
  • Covariance and Quantum Physics-Need for a New Foundation of Quantum Theory?.
  • Relativistic Equations of Motion of “Spin Particles”.
  • Angular Momentum of Isolated Systems in General Relativity.
  • Isometries and General Solutions of Non-Linear Equations.
  • On the Visual Geometry of Spinors and Twistors.
  • Gravitation Photoproduction in Static Electromagnetic Fields and Some Astrophysical Applications.
  • Invariant Deduction of the Gravitational Equations from the Principle of Hamilton.
  • On a Generalization of the Notion of Reimann Curvature and Spaces with Torsion.
  • Comments on the Paper by Elie Cartan: Sur uneGeneralisation de la Notion de Courbure de Riemann et les Espaces a Torsion.