Partial Differential Equations von Jürgen Jost | ISBN 9780387493183

Partial Differential Equations

von Jürgen Jost
Dieser Titel wurde ersetzt durch:×
Buchcover Partial Differential Equations | Jürgen Jost | EAN 9780387493183 | ISBN 0-387-49318-2 | ISBN 978-0-387-49318-3

From the reviews of the second edition:

„Because of the nice global presentation, I recommend this book to students and young researchers who need the now classical properties of these second-order partial differential equations. Teachers will also find in this textbook the basis of an introductory course on second-order partial differential equations.“

- Alain Brillard, Mathematical Reviews

„Beautifully written and superbly well-organised, I strongly recommend this book to anyone seeking a stylish, balanced, up-to-date survey of this central area of mathematics.“

- Nick Lord, The Mathematical Gazette

“It is an expanded translation by the author of the German original. … The range of methods is wide, covering integral kernels, maximum principles, variational principles, gradient descents, weak derivatives and Sobolev spaces. … the proof are clear and pleasant, provided the reader has a good command in integration theory. … This book is an interesting introduction to the multiple facets of partial differential equations –– especially to regularity theory –– for the reader who has already a good background in analysis.” (Jean Van Schaftingen, Bulletin of the Belgian Mathematical Society, 2007)

Partial Differential Equations

von Jürgen Jost

This book offers an ideal introduction to the theory of partial differential equations. It focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. It also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. It also explores connections between elliptic, parabolic, and hyperbolic equations as well as the connection with Brownian motion and semigroups. This second edition features a new chapter on reaction-diffusion equations and systems.