
×
Quantum Groups
von Christian KasselInhaltsverzeichnis
- Content.
- One Quantum SL(2).
- I Preliminaries.
- II Tensor Products.
- III The Language of Hopf Algebras.
- IV The Quantum Plane and Its Symmetries.
- V The Lie Algebra of SL(2).
- VI The Quantum Enveloping Algebra of sl(2).
- VII A Hopf Algebra Structure on Uq(sl(2)).
- Two Universal R-Matrices.
- VIII The Yang-Baxter Equation and (Co)Braided Bialgebras.
- IX Drinfeld’s Quantum Double.
- Three Low-Dimensional Topology and Tensor Categories.
- X Knots, Links, Tangles, and Braids.
- XI Tensor Categories.
- XII The Tangle Category.
- XIII Braidings.
- XIV Duality in Tensor Categories.
- XV Quasi-Bialgebras.
- Four Quantum Groups and Monodromy.
- XVI Generalities on Quantum Enveloping Algebras.
- XVII Drinfeld and Jimbo’s Quantum Enveloping Algebras.
- XVIII Cohomology and Rigidity Theorems.
- XIX Monodromy of the Knizhnik-Zamolodchikov Equations.
- XX Postlude A Universal Knot Invariant.
- References.