Dieser Titel wurde ersetzt durch:
- Nonparametric Statistics for Stochastic Processes (978-0-387-98590-9) - Einband - flex.(Paperback)

×
Inhaltsverzeichnis
- Synopsis.
- 1. The object of the study.
- 2. The kernel density estimator.
- 3. The kernel regression estimator and the induced predictor.
- 4. Mixing processes.
- 5. Density estimation.
- 6. Regression estimation and Prediction.
- 7. Implementation of nonparametric method.
- 1. Inequalities for mixing processes.
- 1. Mixing.
- 2. Coupling.
- 3. Inequalities for covariances and joint densities.
- 4. Exponential type inequalities.
- 5. Some limit theorems for strongly mixing processes.
- Notes.
- 2. Density estimation for discrete time processes.
- 1. Density estimation.
- 2. Optimal asymptotic quadratic error.
- 3. Uniform almost sure convergence.
- 4. Asymptotic normality.
- 5. Non regular cases.
- 3. Regression estimation and prediction for discrete time processes.
- 1. Regression estimation.
- 2. Asymptotic behaviour of the regression estimator.
- 3. Prediction for a stationary Markov process of order k.
- 4. Prediction for general processes.
- 5. Implementation of nonparametric method.
- 4. Density estimation for continuous time processes.
- 1. The kernel density estimator in continuous time.
- 2. Optimal and superoptimal asymptotic quadratic error.
- 3. Optimal and superoptimal uniform convergence rates.
- 4. Sampling.
- 5. Regression estimation and prediction in continuous time.
- 1. The kernel regression estimator in continuous time.
- 3. Superoptimal asymptotic quadratic error.
- 4. Limit in distribution.
- 5. Uniform convergence rates.
- 6. Sampling.
- 7. Nonparametric prediction in continuous time.
- Appendix—Numerical results.