Nonparametric Statistics for Stochastic Processes von Denis Bosq | Estimation and Prediction | ISBN 9780387947136

Nonparametric Statistics for Stochastic Processes

Estimation and Prediction

von Denis Bosq
Dieser Titel wurde ersetzt durch:×
Buchcover Nonparametric Statistics for Stochastic Processes | Denis Bosq | EAN 9780387947136 | ISBN 0-387-94713-2 | ISBN 978-0-387-94713-6

Nonparametric Statistics for Stochastic Processes

Estimation and Prediction

von Denis Bosq

Inhaltsverzeichnis

  • Synopsis.
  • 1. The object of the study.
  • 2. The kernel density estimator.
  • 3. The kernel regression estimator and the induced predictor.
  • 4. Mixing processes.
  • 5. Density estimation.
  • 6. Regression estimation and Prediction.
  • 7. Implementation of nonparametric method.
  • 1. Inequalities for mixing processes.
  • 1. Mixing.
  • 2. Coupling.
  • 3. Inequalities for covariances and joint densities.
  • 4. Exponential type inequalities.
  • 5. Some limit theorems for strongly mixing processes.
  • Notes.
  • 2. Density estimation for discrete time processes.
  • 1. Density estimation.
  • 2. Optimal asymptotic quadratic error.
  • 3. Uniform almost sure convergence.
  • 4. Asymptotic normality.
  • 5. Non regular cases.
  • 3. Regression estimation and prediction for discrete time processes.
  • 1. Regression estimation.
  • 2. Asymptotic behaviour of the regression estimator.
  • 3. Prediction for a stationary Markov process of order k.
  • 4. Prediction for general processes.
  • 5. Implementation of nonparametric method.
  • 4. Density estimation for continuous time processes.
  • 1. The kernel density estimator in continuous time.
  • 2. Optimal and superoptimal asymptotic quadratic error.
  • 3. Optimal and superoptimal uniform convergence rates.
  • 4. Sampling.
  • 5. Regression estimation and prediction in continuous time.
  • 1. The kernel regression estimator in continuous time.
  • 3. Superoptimal asymptotic quadratic error.
  • 4. Limit in distribution.
  • 5. Uniform convergence rates.
  • 6. Sampling.
  • 7. Nonparametric prediction in continuous time.
  • Appendix—Numerical results.