Stochastic Evolution Systems von B.L. Rozovskii | Linear Theory and Applications to Non-linear Filtering | ISBN 9780792300373

Stochastic Evolution Systems

Linear Theory and Applications to Non-linear Filtering

von B.L. Rozovskii
Buchcover Stochastic Evolution Systems | B.L. Rozovskii | EAN 9780792300373 | ISBN 0-7923-0037-8 | ISBN 978-0-7923-0037-3

Stochastic Evolution Systems

Linear Theory and Applications to Non-linear Filtering

von B.L. Rozovskii

Inhaltsverzeichnis

  • 1 Examples and Auxiliary Results.
  • 1.0. Introduction.
  • 1.1. Examples of Stochastic Evolution Systems.
  • 1.2. Measurability and Integrability in Banach Spaces.
  • 1.3. Martingales in ?1.
  • 1.4. Diffusion Processes.
  • 2 Stochastic Integration in a Hilbert Space.
  • 2.0. Introduction.
  • 2.1. Martingales and Local Martingales.
  • 2.2. Stochastic Integrals with Respect to Square Integrable Martingale.
  • 2.3. Stochastic Integrable with Respect to a Local Martingale.
  • 2.4. An Energy Equality in a Rigged Hilbert Space.
  • 3 Linear Stochastic Evolution Systems in Hilbert Spaces.
  • 3.0. Introduction.
  • 3.1. Coercive Systems.
  • 3.2. Dissipative Systems.
  • 3.3. Uniqueness and the Markov Property.
  • 3.4. The First Boundary Problem for Ito’s Partial Differential Equations.
  • 4 Ito’S Second Order Parabolic Equations.
  • 4.0. Introduction.
  • 4.1. The Cauchy Problem for Superparabolic Ito’s Second Order Parabolic Equations.
  • 4.2. The Cauchy Problem for Ito’s Second Order Equations.
  • 4.3. The Forward Cauchy Problem and the Backward One in Weighted Sobolev Spaces.
  • 5 Ito’s Partial Differential Equations and Diffusion Processes.
  • 5.0. Introduction.
  • 5.1. The Method of Stochastic Characteristics.
  • 5.2. Inverse Diffusion Processes, the Method of Variation of Constants and the Liouville Equations.
  • 5.3. A Representation of a Density-valued Solution.
  • 6 Filtering Interpolation and Extrapolation of Diffusion Processes.
  • 6.0. Introduction.
  • 6.1. Bayes’ Formula and the Conditional Markov Property.
  • 6.2. The Forward Filtering Equation.
  • 6.3. The Backward Filtering Equation Interpolation and Extrapolation.
  • 7 Hypoellipticity of Ito’s Second Order Parabolic Equations.
  • 7.0. Introduction.
  • 7.1. Measure-valued Solution and Hypoellipticity under Generalized Hörmander’s Condition.
  • 7.2. The Filtering Transition Density and a Fundamental Solution of the Filtering Equation in Hypoelliptic and Superparabolic Cases.
  • Notes.
  • References.