Classical and Modern Potential Theory and Applications | ISBN 9780792328032

Classical and Modern Potential Theory and Applications

herausgegeben von K. GowriSankaran und weiteren
Mitwirkende
Herausgegeben vonK. GowriSankaran
Herausgegeben vonJ. Bliedtner
Herausgegeben vonD. Feyel
Herausgegeben vonM. Goldstein
Herausgegeben vonW.K. Hayman
Herausgegeben vonI. Netuka
Buchcover Classical and Modern Potential Theory and Applications  | EAN 9780792328032 | ISBN 0-7923-2803-5 | ISBN 978-0-7923-2803-2

Classical and Modern Potential Theory and Applications

herausgegeben von K. GowriSankaran und weiteren
Mitwirkende
Herausgegeben vonK. GowriSankaran
Herausgegeben vonJ. Bliedtner
Herausgegeben vonD. Feyel
Herausgegeben vonM. Goldstein
Herausgegeben vonW.K. Hayman
Herausgegeben vonI. Netuka

Inhaltsverzeichnis

  • Nonlinear PDE and the Wiener Test.
  • k-Superharmonic Functions and L. Kelvin’s Theorem.
  • On the Invariance of the Solutions of the Weinstein Equation under Möbius Transformations.
  • Radial Limiting Behaviour of Harmonic and Superharmonic Functions.
  • Multiparameter Processes associated with Ornstein-Uhlenbeck Semi-groups.
  • On the Problem of Hypoellipticity on the Infinite Dimensional Torus.
  • L’équation de Monge-Ampère dans un espace de Banach.
  • Excessive Functions and Excessive Measures. Hunt’s Theorem on Balayages, Quasi-continuity.
  • The Wiener Test for Poincaré-Dirichlet Forms.
  • The Best Approach for Boundary Limits.
  • Fine Behaviour of Balayages in Potential Theory.
  • Some Results about Sequential Integration on Wiener Space.
  • Schwarz Lemma type Inequalities for Harmonic Functions in the Ball.
  • Duality of H-Cones.
  • Régularité et Intégrabilité des Fonctionnelles de Wiener.
  • Poincaré Inequalities in L1-norm for the Sphere and a Strong Isoperimetric Inequality in R1.
  • Uniform and Tangential Harmonic Approximation.
  • Inversion and Reflecting Brownian Moti.
  • ?-Potentials.
  • Fatou-Doob Limits and the Best Filters.
  • Gaussian Upper Bounds for the Heat Kernel and its Derivatives on a Riemannian Manifold.
  • Integrals of Analytic Functions along 2 Curves.
  • On the Restricted Mean Value Property for Measurable Functions.
  • A Constructive Method for Univalent Logharmonic Mappings.
  • Choquet Type Integral Representation of Polyexcessive Functions.
  • Refining the Local Uniform Convergence Topology.
  • Daily Rheological Phenomena.
  • Convergence Property and Superharmonic Functions on Balayage Spaces.
  • Mean Value Property of Harmonic Functions.
  • Farrell and Mergelyan Sets for the Space of Bounded Harmonic Functions.
  • Mèthodes Analytiques en Dimension Infinie.
  • Construction d’unProcessus à deux Parametres à partir d’un Semi-groupe à un Paramètre.
  • Capacities and Harmonic Measures for Uniformly Elliptic Operators of non-Divergence Form.
  • Problems.