
×
Classical and Modern Potential Theory and Applications
herausgegeben von K. GowriSankaran und weiterenInhaltsverzeichnis
- Nonlinear PDE and the Wiener Test.
- k-Superharmonic Functions and L. Kelvin’s Theorem.
- On the Invariance of the Solutions of the Weinstein Equation under Möbius Transformations.
- Radial Limiting Behaviour of Harmonic and Superharmonic Functions.
- Multiparameter Processes associated with Ornstein-Uhlenbeck Semi-groups.
- On the Problem of Hypoellipticity on the Infinite Dimensional Torus.
- L’équation de Monge-Ampère dans un espace de Banach.
- Excessive Functions and Excessive Measures. Hunt’s Theorem on Balayages, Quasi-continuity.
- The Wiener Test for Poincaré-Dirichlet Forms.
- The Best Approach for Boundary Limits.
- Fine Behaviour of Balayages in Potential Theory.
- Some Results about Sequential Integration on Wiener Space.
- Schwarz Lemma type Inequalities for Harmonic Functions in the Ball.
- Duality of H-Cones.
- Régularité et Intégrabilité des Fonctionnelles de Wiener.
- Poincaré Inequalities in L1-norm for the Sphere and a Strong Isoperimetric Inequality in R1.
- Uniform and Tangential Harmonic Approximation.
- Inversion and Reflecting Brownian Moti.
- ?-Potentials.
- Fatou-Doob Limits and the Best Filters.
- Gaussian Upper Bounds for the Heat Kernel and its Derivatives on a Riemannian Manifold.
- Integrals of Analytic Functions along 2 Curves.
- On the Restricted Mean Value Property for Measurable Functions.
- A Constructive Method for Univalent Logharmonic Mappings.
- Choquet Type Integral Representation of Polyexcessive Functions.
- Refining the Local Uniform Convergence Topology.
- Daily Rheological Phenomena.
- Convergence Property and Superharmonic Functions on Balayage Spaces.
- Mean Value Property of Harmonic Functions.
- Farrell and Mergelyan Sets for the Space of Bounded Harmonic Functions.
- Mèthodes Analytiques en Dimension Infinie.
- Construction d’unProcessus à deux Parametres à partir d’un Semi-groupe à un Paramètre.
- Capacities and Harmonic Measures for Uniformly Elliptic Operators of non-Divergence Form.
- Problems.