Handbook of Floating-Point Arithmetic von Jean-Michel Muller | ISBN 9780817647049

Handbook of Floating-Point Arithmetic

von Jean-Michel Muller und weiteren
Mitwirkende
Autor / AutorinJean-Michel Muller
Autor / AutorinNicolas Brisebarre
Autor / AutorinFlorent de Dinechin
Autor / AutorinClaude-Pierre Jeannerod
Autor / AutorinVincent Lefèvre
Autor / AutorinGuillaume Melquiond
Autor / AutorinNathalie Revol
Autor / AutorinDamien Stehlé
Autor / AutorinSerge Torres
Dieser Titel wurde ersetzt durch:×
Buchcover Handbook of Floating-Point Arithmetic | Jean-Michel Muller | EAN 9780817647049 | ISBN 0-8176-4704-X | ISBN 978-0-8176-4704-9

From the reviews:

“This handbook aims to provide a complete overview of modern floating-point arithmetic, including a detailed treatment of the newly revised IEEE 751-2008 standard for floating-point arithmetic. … This book is useful to programmers, compiler designers and students and researchers in numerical analysis.” (T. C. Mohan, Zentralblatt MATH, Vol. 1197, 2010)

Handbook of Floating-Point Arithmetic

von Jean-Michel Muller und weiteren
Mitwirkende
Autor / AutorinJean-Michel Muller
Autor / AutorinNicolas Brisebarre
Autor / AutorinFlorent de Dinechin
Autor / AutorinClaude-Pierre Jeannerod
Autor / AutorinVincent Lefèvre
Autor / AutorinGuillaume Melquiond
Autor / AutorinNathalie Revol
Autor / AutorinDamien Stehlé
Autor / AutorinSerge Torres

Floating-point arithmetic is the most widely used way of implementing real-number arithmetic on modern computers. However, making such an arithmetic reliable and portable, yet fast, is a very difficult task. As a result, floating-point arithmetic is far from being exploited to its full potential. This handbook aims to provide a complete overview of modern floating-point arithmetic. So that the techniques presented can be put directly into practice in actual coding or design, they are illustrated, whenever possible, by a corresponding program.

The handbook is designed for programmers of numerical applications, compiler designers, programmers of floating-point algorithms, designers of arithmetic operators, and more generally, students and researchers in numerical analysis who wish to better understand a tool used in their daily work and research.