An Introduction to Group Rings von César Polcino Milies | ISBN 9781402002397

An Introduction to Group Rings

von César Polcino Milies und S.K. Sehgal
Mitwirkende
Autor / AutorinCésar Polcino Milies
Autor / AutorinS.K. Sehgal
Buchcover An Introduction to Group Rings | César Polcino Milies | EAN 9781402002397 | ISBN 1-4020-0239-4 | ISBN 978-1-4020-0239-7

An Introduction to Group Rings

von César Polcino Milies und S.K. Sehgal
Mitwirkende
Autor / AutorinCésar Polcino Milies
Autor / AutorinS.K. Sehgal

Inhaltsverzeichnis

  • 1 Groups.
  • 1.1 Basic Concepts.
  • 1.2 Homomorphisms and Factor Groups.
  • 1.3 Abelian Groups.
  • 1.4 Group Actions, p-groups and Sylow Subgroups.
  • 1.5 Solvable and Nilpotent Groups.
  • 1.6 FC Groups.
  • 1.7 Free Groups and Free Products.
  • 1.8 Hamiltonian Groups.
  • 1.9 The Hirsch Number.
  • 2 Rings, Modules and Algebras.
  • 2.1 Rings and Ideals.
  • 2.2 Modules and Algebras.
  • 2.3 Free Modules and Direct Sums.
  • 2.4 Finiteness Conditions.
  • 2.5 Semisimplicity.
  • 2.6 The Wedderburn-Artin Theorem.
  • 2.7 The Jacobson Radical.
  • 2.8 Rings of Algebraic Integers.
  • 2.9 Orders.
  • 2.10 Tensor Products.
  • 3 Group Rings.
  • 3.1 A Brief History.
  • 3.2 Basic Facts.
  • 3.3 Augmentation Ideals.
  • 3.4 Semisimplicity.
  • 3.5 Abelian Group Algebras.
  • 3.6 Some Commutative Subalgebras.
  • 4 A Glance at Group Representations.
  • 4.1 Definition and Examples.
  • 4.2 Representations and Modules.
  • 5 Group Characters.
  • 5.1 Basic Facts.
  • 5.2 Characters and Isomorphism Questions.
  • 6 Ideals in Group Rings.
  • 6.1 Ring Theoretic Formulas.
  • 6.2 Nilpotent Ideals.
  • 6.3 Nilpotent Augmentation Ideals.
  • 6.4 Semiprime Group Rings.
  • 6.5 Prime Group Rings.
  • 6.6 Chain Conditions in KG.
  • 7 Algebraic Elements.
  • 7.1 Introduction.
  • 7.2 Idempotent Elements.
  • 7.3 Torsion Units.
  • 7.4 Nilpotent Elements.
  • 8 Units of Group Rings.
  • 8.1 Introduction.
  • 8.2 Trivial Units.
  • 8.3 Finite Groups.
  • 8.4 Units of ZS3.
  • 8.5 Infinite Groups.
  • 8.6 Finite Generation of U(ZG).
  • 8.7 Central Units.
  • 9 The Isomorphism Problem.
  • 9.1 Introduction.
  • 9.2 The Normal Subgroup Correspondence.
  • 9.3 Metabelian Groups.
  • 9.4 Circle Groups.
  • 9.5 Further Results.
  • 9.6 The Modular Isomorphism Problem.
  • 10 Free Groups of Units.
  • 10.1 Free Groups.
  • 10.2 Free Groups of Units.
  • 10.3 Explicit Free Groups.
  • 10.4 Explicit Free Groups in H.
  • 11 Properties of the Unit Group.
  • 11.1 Integral Group Rings.
  • 11.2 Group Algebras.