Unicity of Meromorphic Mappings von Pei-Chu Hu | ISBN 9781441952431

Unicity of Meromorphic Mappings

von Pei-Chu Hu, Ping Li und Chung-Chun Yang
Mitwirkende
Autor / AutorinPei-Chu Hu
Autor / AutorinPing Li
Autor / AutorinChung-Chun Yang
Buchcover Unicity of Meromorphic Mappings | Pei-Chu Hu | EAN 9781441952431 | ISBN 1-4419-5243-8 | ISBN 978-1-4419-5243-1

Unicity of Meromorphic Mappings

von Pei-Chu Hu, Ping Li und Chung-Chun Yang
Mitwirkende
Autor / AutorinPei-Chu Hu
Autor / AutorinPing Li
Autor / AutorinChung-Chun Yang
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.