Automatic Differentiation of Algorithms | From Simulation to Optimization | ISBN 9781461265436

Automatic Differentiation of Algorithms

From Simulation to Optimization

herausgegeben von George Corliss, Christele Faure, Andreas Griewank, Laurent Hascoet und Uwe Naumann
Mitwirkende
Herausgegeben vonGeorge Corliss
Herausgegeben vonChristele Faure
Herausgegeben vonAndreas Griewank
Herausgegeben vonLaurent Hascoet
Herausgegeben vonUwe Naumann
Buchcover Automatic Differentiation of Algorithms  | EAN 9781461265436 | ISBN 1-4612-6543-6 | ISBN 978-1-4612-6543-6

Automatic Differentiation of Algorithms

From Simulation to Optimization

herausgegeben von George Corliss, Christele Faure, Andreas Griewank, Laurent Hascoet und Uwe Naumann
Mitwirkende
Herausgegeben vonGeorge Corliss
Herausgegeben vonChristele Faure
Herausgegeben vonAndreas Griewank
Herausgegeben vonLaurent Hascoet
Herausgegeben vonUwe Naumann

Automatic Differentiation (AD) is a maturing computational technology and has become a mainstream tool used by practicing scientists and computer engineers. The rapid advance of hardware computing power and AD tools has enabled practitioners to quickly generate derivative-enhanced versions of their code for a broad range of applications in applied research and development.
Automatic Differentiation of Algorithms provides a comprehensive and authoritative survey of all recent developments, new techniques, and tools for AD use. The book covers all aspects of the subject: mathematics, scientific programming (i. e., use of adjoints in optimization) and implementation (i. e., memory management problems). A strong theme of the book is the relationships between AD tools and other software tools, such as compilers and parallelizers. A rich variety of significant applications are presented as well, including optimum-shape design problems, for which AD offers more efficient tools and techniques.