Quantum Mechanics of Fundamental Systems | ISBN 9781461364894

Quantum Mechanics of Fundamental Systems

herausgegeben von Claudio Teitelboim und Jorge Zanelli
Mitwirkende
Herausgegeben vonClaudio Teitelboim
Herausgegeben vonJorge Zanelli
Buchcover Quantum Mechanics of Fundamental Systems  | EAN 9781461364894 | ISBN 1-4613-6489-2 | ISBN 978-1-4613-6489-4

Quantum Mechanics of Fundamental Systems

herausgegeben von Claudio Teitelboim und Jorge Zanelli
Mitwirkende
Herausgegeben vonClaudio Teitelboim
Herausgegeben vonJorge Zanelli

Inhaltsverzeichnis

  • 1 Fractional Statistics in Quantum Mechanics.
  • 1. Introduction.
  • 2. Charge-Flux Composites.
  • 3. Dilute Anyon Gases.
  • 4. Fractional Statistics in the Quantized Hall Effect.
  • 5. Many-Body Theory of the Anyon Gas.
  • 6. Chern-Simons Field Theory and Fractional Statistics.
  • Appendix: Many Anyons in a Magnetic Field.
  • References.
  • 2 Microscopic and Macroscopic Loops in Nonperturbative Two-Dimensional Gravity.
  • 3 Supersymmetry and Gauge Invariance in Stochastic Quantization.
  • 2. Langevin Equations for Theories with a Yang-Mills Symmetry.
  • 3. The Partition function.
  • 4. The Case of Diffeomorphism Invariance.
  • 5. The Case of First-Order Systems.
  • 4 Covariant Superstrings.
  • 2. The Minimal Covariant Action.
  • 3. Covariant Superstrings from the Light-Cone Gauge.
  • 5 Constraints on the Baryogenesis Scale from Neutrino Masses.
  • 2. Heavy Neutrino Decays.
  • 3. Conclusions.
  • 6 The Antifield-BRST Formalism for Gauge Theories.
  • 2. Structure of the Gauge Symmetries.
  • 3. Gauge Invariance and BRST Invariance—Basic Requirements.
  • 4. Relativistic Description of Gauge-invariant Functions.
  • 5. The Koszul-Tate Resolution.
  • 6. The Exterior Derivative along the Gauge Orbits.
  • 7. BRST Symmetry—Master Equation.
  • 8. Path Integral.
  • 9. Examples.
  • Appendix: Abelianization of the Gauge Transformations.
  • 7 Combinatorics of Mapping Class Groups and Matrix Integration.
  • 2. Matrix Integration Revisited.
  • 3. Harmonic Oscillator and Fermions.
  • 4. The Virtual Euler Characteristic of the Mapping Class Group.
  • 5. Direct Method.
  • 6. Concluding Remarks.
  • 8 Field-theoretical Description of High-Tc Superconductors: Topological Excitations, GeneralizedStatistics, and Doping.
  • 2. The Continuum Model for High-Tc Superconductors.
  • 3. Quantization of Topological Excitations in the Continuum Models for the New Superconductors.
  • 4. Generalized Statistics and Superconductivity.
  • 5. Introduction of Dopants: A Possible Mechanism of Superconductivity.
  • 9 Random Dynamics, Three Generations, and Skewness.
  • 1. Random Dynamics.
  • 2. Field Theory Glass.
  • 3. Skewness the Golden Principle.
  • 10 Gauge Anomalies in Two Dimensions.
  • 2. The Chiral Schwinger Model: The Effective Action.
  • 3. Solutions of the CSM.
  • 4. Non-Abelian Chiral Gauge Theory.
  • 11 Some Topics in Topological Quantum Field Theories.
  • 2. TQFTs and Stochastic Processes.
  • 3. Two-Dimensional Models.
  • 4. Topological Invariants.