Representations of SU(2,1) in Fourier Term Modules von Roelof W. Bruggeman | ISBN 9783031431913

Representations of SU(2,1) in Fourier Term Modules

von Roelof W. Bruggeman und Roberto J. Miatello
Mitwirkende
Autor / AutorinRoelof W. Bruggeman
Autor / AutorinRoberto J. Miatello
Buchcover Representations of SU(2,1) in Fourier Term Modules | Roelof W. Bruggeman | EAN 9783031431913 | ISBN 3-031-43191-X | ISBN 978-3-031-43191-3

Representations of SU(2,1) in Fourier Term Modules

von Roelof W. Bruggeman und Roberto J. Miatello
Mitwirkende
Autor / AutorinRoelof W. Bruggeman
Autor / AutorinRoberto J. Miatello

This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included.
These results can be  applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms.
Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed.