Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems von ENGELI | ISBN 9783034872263

Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems

von ENGELI, GINSBURG, STIEFEL und RUTISHAUSER
Mitwirkende
Autor / AutorinENGELI
Autor / AutorinGINSBURG
Autor / AutorinSTIEFEL
Autor / AutorinRUTISHAUSER
Buchcover Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems | ENGELI | EAN 9783034872263 | ISBN 3-0348-7226-7 | ISBN 978-3-0348-7226-3

Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems

von ENGELI, GINSBURG, STIEFEL und RUTISHAUSER
Mitwirkende
Autor / AutorinENGELI
Autor / AutorinGINSBURG
Autor / AutorinSTIEFEL
Autor / AutorinRUTISHAUSER

Inhaltsverzeichnis

  • I: The Self-Adjoint Boundary Value Problem.
  • 1. Problems of Dirichlet’s and Poisson’s type.
  • 2. Better approximations.
  • 3. Energy on the boundary.
  • 4. Eigenvalue problems.
  • 5. Biharmonic problems.
  • 6. Adaption for practical purposes; the test example.
  • 7. Modes of oscillation of the plate.
  • II: Theory of Gradient Methods.
  • 1. Introduction.
  • 2. The residual polynomial.
  • 3. Methods with two-term recursive formulae.
  • 4. Methods with three-term recursive formulae.
  • 5. Combined methods.
  • 6. The cgT-method.
  • 7. Determination of eigenvalues.
  • III: Experiments on Gradient Methods.
  • 2. Survey of the plate experiments.
  • 3. Solution of the system A x + b = 0 (Plate problem with coarse grid).
  • 4. Determination of the eigenvalues of A.
  • 5. Solution of the system A x + b =0 and determination of the eigenvalues of A; fine grid.
  • 6. Second test example: the bar problem.
  • 7. Appendix: The first three eigenvectors of A.
  • IV: Overrelaxation.
  • 1. Theory.
  • 2. Numerical results (Plate problem).
  • 3. The bar problem.
  • V: Conclusions.
  • 1. The plate problem.
  • 2. The bar problem.
  • 3. Computation of eigenvalues.
  • 4. Recollection of the facts.
  • References.