Lectures on Hyponormal Operators von Mihai Putinar | ISBN 9783034874687

Lectures on Hyponormal Operators

von Mihai Putinar und Mircea Martin
Mitwirkende
Autor / AutorinMihai Putinar
Autor / AutorinMircea Martin
Buchcover Lectures on Hyponormal Operators | Mihai Putinar | EAN 9783034874687 | ISBN 3-0348-7468-5 | ISBN 978-3-0348-7468-7

Lectures on Hyponormal Operators

von Mihai Putinar und Mircea Martin
Mitwirkende
Autor / AutorinMihai Putinar
Autor / AutorinMircea Martin

Inhaltsverzeichnis

  • I: Subnormal operators.
  • 1. Elementary properties and examples.
  • 2. Characterization of subnormality.
  • 3. The minimal normal extension.
  • 4. Putnam’s inequality.
  • 5. Supplement: Positive definite kernels.
  • Notes.
  • Exercises.
  • II: Hyponormal operators and related objects.
  • 1. Pure hyponormal operators.
  • 2. Examples of hyponormal operators.
  • 3. Contractions associated to hyponormal operators.
  • 4. Unitary invariants.
  • III: Spectrum, resolvent and analytic functional calculus.
  • 1. The spectrum.
  • 2. Estimates of the resolvent function.
  • 3. A sharpened analytic functional calculus.
  • 4. Generalized scalar extensions.
  • 5. Local spectral properties.
  • 6. Supplement: Pseudo-analytic extensions of smooth functions.
  • IV: Some invariant subspaces for hyponormal operators.
  • 1. Preliminaries.
  • 2. Scott Brown’s theorem.
  • 3. Hyperinvariant subspaces for subnormal operators.
  • 4. The lattice of invariant subspaces.
  • V: Operations with hyponormal operators.
  • 1. Operations.
  • 2. Spectral mapping results.
  • VI: The basic inequalities.
  • 1. Berger and Shaw’s inequality.
  • 2. Putnam’s inequality.
  • 3. Commutators and absolute continuity of self-adjoint operators.
  • 4. Kato’s inequality.
  • 5. Supplement: The structure of absolutely continuous self-adjoint operators.
  • VII: Functional models.
  • 1. The Hilbert transform of vector valued functions.
  • 2. The singular integral model.
  • 3. The two-dimensional singular integral model.
  • 4. The Toeplitz model.
  • 5. Supplement: One dimensional singular integral operators.
  • VIII: Methods of perturbation theory.
  • 1. The phase shift.
  • 2. Abstract symbol and Friedrichs operations.
  • 3. The Birman — Kato — Rosenblum scattering theory.
  • 4. Boundary behaviour of compressed resolvents.
  • 5. Supplement: Integral representations for a class of analytic functions defined in the upper half-plane.
  • IX: Mosaics.
  • 1. The phase operator.
  • 2. Determining functions.
  • 3. The principal function.
  • 4. Symbol homomorphisms and mosaics.
  • 5. Properties of the mosaic.
  • 6. Supplement: A spectral mapping theorem for the numerical range.
  • X: The principal function.
  • 1. Bilinear forms with the collapsing property.
  • 2. Smooth functional calculus modulo trace-class operators and the trace formula.
  • 3. The properties of the principal function.
  • 4. Berger’s estimates.
  • XI: Operators with one dimensional self-commutator.
  • 1. The global local resolvent.
  • 2. The kernel function.
  • 3. A functional model.
  • 4. The spectrum and the principal function.
  • XII: Applications.
  • 1. Pairs of unbounded self-adjoint operators.
  • 2. The Szego limit theorem.
  • 3. A two dimensional moment problem.
  • References.
  • Notation and symbols.