Cohomological Methods in Homotopy Theory | Barcelona Conference on Algebraic Topology, Bellatera, Spain, June 4–10, 1998 | ISBN 9783034895132

Cohomological Methods in Homotopy Theory

Barcelona Conference on Algebraic Topology, Bellatera, Spain, June 4–10, 1998

herausgegeben von Jaume Aguade, Carles Broto und Carles Casacuberta
Mitwirkende
Herausgegeben vonJaume Aguade
Herausgegeben vonCarles Broto
Herausgegeben vonCarles Casacuberta
Buchcover Cohomological Methods in Homotopy Theory  | EAN 9783034895132 | ISBN 3-0348-9513-5 | ISBN 978-3-0348-9513-2

Cohomological Methods in Homotopy Theory

Barcelona Conference on Algebraic Topology, Bellatera, Spain, June 4–10, 1998

herausgegeben von Jaume Aguade, Carles Broto und Carles Casacuberta
Mitwirkende
Herausgegeben vonJaume Aguade
Herausgegeben vonCarles Broto
Herausgegeben vonCarles Casacuberta

Inhaltsverzeichnis

  • Etale approximations and the mod l cohomology of GLn.
  • On the Hurewicz map and Postnikov invariants of K?.
  • Recognition principle for generalized Eilenberg—Mac Lane spaces.
  • Groups with infinite homology.
  • Unstable splittings related to Brown—Peterson cohomology.
  • Stripping and splitting decorated mapping class groups.
  • Loop spaces of configuration spaces, braid-like groups, and knots.
  • On the homotopy type of infinite stunted projective spaces.
  • Stable splittings of ? SU(n).
  • Structure of mod p H-spaces with finiteness conditions.
  • Composition methods in the homotopy groups of ring spectra.
  • Tate cohomology in axiomatic stable homotopy theory.
  • Serre’s theorem and the Nill filtration of Lionel Schwartz.
  • New relationships among loopspaces, symmetric products, and Eilenberg MacLane spaces.
  • Chern characters for the equivariant K-theory of proper G-CW-complexes.
  • The Thomified Eilenberg—Moore spectral sequence.
  • On the classifying space for proper actions.
  • Toric morphisms between p-compact groups.
  • On the vanishing of certain K-theory Nil-groups.
  • Lusternik-Schnirelmann cocategory: A Whitehead dual approach.
  • Rational self-equivalences for H-spaces.
  • Cellular approximations using Moore spaces.
  • Configuration spaces with summable labels.
  • Kaleidoscoping Lusternik—Schnirelmann category type invariants.
  • Essential category weight and phantom maps.