Chebyshev Splines and Kolmogorov Inequalities von Sergey Bagdasarov | ISBN 9783034897815

Chebyshev Splines and Kolmogorov Inequalities

von Sergey Bagdasarov
Buchcover Chebyshev Splines and Kolmogorov Inequalities | Sergey Bagdasarov | EAN 9783034897815 | ISBN 3-0348-9781-2 | ISBN 978-3-0348-9781-5

Chebyshev Splines and Kolmogorov Inequalities

von Sergey Bagdasarov

Inhaltsverzeichnis

  • 0 Introduction.
  • 1 Auxiliary Results.
  • 2 Maximization of Functionals in H? [a, b] and Perfect ?-Splines.
  • 3 Fredholm Kernels.
  • 4 Review of Classical Chebyshev Polynomial Splines.
  • 5 Additive Kolmogorov-Landau Inequalities.
  • 6 Proof of the Main Result.
  • 7 Properties of Chebyshev ?-Splines.
  • 8 Chebyshev ?-Splines on the Half-line ?+.
  • 9 Maximization of Integral Functional in H?[a1, a2], -? ? a1 < a2 ? +?.
  • 10 Sharp Kolmogorov Inequalities in WrH?(?).
  • 11 Landau and Hadamard Inequalities in WrH?(?+) and WrH?(?).
  • 12 Sharp Kolmogorov-Landau inequalities in W2H?(?) AND W2H?(?+.
  • 13 Chebyshev ?-Splines in the Problem of N-Width of the Functional Class WrH?[0, 1].
  • 14 Function in WrH?[-1, 1] Deviating Most from Polynomials of Degree r.
  • 15 N-Widths of the Class WrH?[-1, 1].
  • 16 Lower Bounds for the N-Widths of the Class WrH?[n].
  • Appendix A Kolmogorov Problem for Functions.
  • A.3 Sufficient conditions of extremality in the problem (K - L).
  • A.3.1 Corollaries of differentiation formulas.
  • A.3.2 Extremality conditions in the form of an operator equation.
  • A.4.2 Solution of the problem (K).
  • A.4.3 Problem (K) in the Hölder classes.
  • B.1 Preliminary remarks.
  • B.2 Maximization of the norm.
  • B.2.1 Differentiation formulae and inequalities.
  • B.3 Maximization of the norm.
  • B.4 Maximization of the norm.
  • B.5 Maximization of the norm.