Pseudo-Differential Operators, Singularities, Applications von Iouri Egorov | ISBN 9783034898201

Pseudo-Differential Operators, Singularities, Applications

von Iouri Egorov und Bert-Wolfgang Schulze
Mitwirkende
Autor / AutorinIouri Egorov
Autor / AutorinBert-Wolfgang Schulze
Buchcover Pseudo-Differential Operators, Singularities, Applications | Iouri Egorov | EAN 9783034898201 | ISBN 3-0348-9820-7 | ISBN 978-3-0348-9820-1

Pseudo-Differential Operators, Singularities, Applications

von Iouri Egorov und Bert-Wolfgang Schulze
Mitwirkende
Autor / AutorinIouri Egorov
Autor / AutorinBert-Wolfgang Schulze

Inhaltsverzeichnis

  • 1 Sobolev spaces.
  • 1.1 Fourier transform.
  • 1.2 The first definition of the Sobolev space.
  • 1.3 General definition of Sobolev spaces in ? n.
  • 1.4 Representation of a linear functional over Hs.
  • 1.5 Embedding theorems.
  • 1.6 Sobolev spaces in a domain.
  • 2 Pseudo-differential Operators.
  • 2.1 The algebra of differential operators.
  • 2.2 Basic properties of pseudo-differential operators.
  • 2.3 Calculus of pseudo-differential operators.
  • 2.4 Pseudo-differential operators on closed manifolds.
  • 2.5 Gårding inequality.
  • 3 Elliptic pseudo-differential operators.
  • 3.1 Parametrices of the elliptic operators.
  • 3.2 Elliptic operators on a manifold.
  • 4 Elliptic boundary value problems.
  • 4.1 Model elliptic boundary value problems.
  • 4.2 Elliptic boundary value problems in a domain.
  • 5 Kondratiev’s theory.
  • 5.1 A model problem.
  • 5.2 The general problem.
  • 5.3 The boundary value problem in an infinite cone for operators with constant coefficients.
  • 5.4 Equations with variable coefficients in an infinite cone.
  • 5.5 The boundary value problem in a bounded domain.
  • 6 Non-elliptic operators; propagation of singularities.
  • 6.1 Canonical transformations and Fourier integral operators.
  • 6.2 Wave fronts of distributions.
  • 6.3 Wave fronts and Fourier integral operators.
  • 6.4 Propagation of singularities.
  • 6.5 The Cauchy problem for a strongly hyperbolic equation.
  • 7 Pseudo-differential operators on manifolds with conical and edge singularities; motivation and technical preparations.
  • 7.1 The general background.
  • 7.2 Parameter-dependent pseudo-differential operators and operator-valued Mellin symbols.
  • 8 Pseudo-differential operators on manifolds with conical singularities.
  • 8.1 The cone algebra with asymptotics.
  • 8.2 The algebra on the infinite cone.
  • 9 Pseudo-differential operators on manifoldswith edges.
  • 9.1 Pseudo-differential operators with operator-valued symbols.
  • 9.2 The edge symbolic calculus.
  • 9.3 Edge pseudo-differential operators.
  • 9.4 Applications, examples and remarks.