Machine Learning in Radiation Oncology | Theory and Applications | ISBN 9783319183046

Machine Learning in Radiation Oncology

Theory and Applications

herausgegeben von Issam El Naqa, Ruijiang Li und Martin J. Murphy
Mitwirkende
Herausgegeben vonIssam El Naqa
Herausgegeben vonRuijiang Li
Herausgegeben vonMartin J. Murphy
Dieser Titel wurde ersetzt durch:×
Buchcover Machine Learning in Radiation Oncology  | EAN 9783319183046 | ISBN 3-319-18304-4 | ISBN 978-3-319-18304-6

Machine Learning in Radiation Oncology

Theory and Applications

herausgegeben von Issam El Naqa, Ruijiang Li und Martin J. Murphy
Mitwirkende
Herausgegeben vonIssam El Naqa
Herausgegeben vonRuijiang Li
Herausgegeben vonMartin J. Murphy
This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.