Rational Points von Gerd Faltings | Seminar Bonn/Wuppertal 1983/84 | ISBN 9783322803429

Rational Points

Seminar Bonn/Wuppertal 1983/84

von Gerd Faltings und Gisbert Wüstholz
Mitwirkende
Autor / AutorinGerd Faltings
Autor / AutorinGisbert Wüstholz
Buchcover Rational Points | Gerd Faltings | EAN 9783322803429 | ISBN 3-322-80342-2 | ISBN 978-3-322-80342-9

Rational Points

Seminar Bonn/Wuppertal 1983/84

von Gerd Faltings und Gisbert Wüstholz
Mitwirkende
Autor / AutorinGerd Faltings
Autor / AutorinGisbert Wüstholz

Inhaltsverzeichnis

  • I: Moduli Spaces.
  • § 1 Introduction.
  • § 2 Generalities about moduli spaces.
  • § 3 Examples.
  • § 4 Metrics with logarithmic singularities.
  • § 5 The minimal compactification of Ag/?.
  • § 8 The toroidal compactification.
  • II: Heights.
  • § 1 The definition.
  • § 2 Néron-Tate heights.
  • § 3 Heights on the moduli space.
  • § 4 Applications.
  • III: Some Facts from the Theory of Group Schemes.
  • § 0 Introduction.
  • § 1 Generalities on group schemes.
  • § 2 Finite group schemes.
  • § 3 p-divisible groups.
  • § 4 A theorem of Raynaud.
  • § 5 A theorem of Tate.
  • IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.
  • § 1 Statements.
  • § 2 Reductions.
  • § 3 Heights.
  • § 4 Variants.
  • V: The Finiteness Theorems of Faltings.
  • § 2 The finiteness theorem for isogeny classes.
  • § 3 The finiteness theorem for isomorphism classes.
  • § 4 Proof of Mordell’s conjecture.
  • § 5 Siegel’s Theorem on integer points.
  • VI: Complements to Mordell.
  • § 2 Preliminaries.
  • § 3 The Tate conjecture.
  • § 4 The Shafarevich conjecture.
  • § 5 Endomorphisms.
  • § 6 Effectivity.
  • VII: Intersection Theory on Arithmetic Surfaces.
  • § 1 Hermitian line bundles.
  • § 2 Arakelov divisors and intersection theory.
  • § 3 Volume forms on IR?(X, ?).
  • § 4 Riemann Roch.
  • § 5 The Hodge index theorem.
  • Appendix: New Developments in Diophantine and Arithmetic Algebraic Geometry (Gisbert Wüstholz).
  • § 2 The transcendental approach.
  • § 3 Vojta’s approach.
  • § 4 Arithmetic Riemann-Roch Theorem.
  • § 5 Applications in Arithmetic.
  • § 6 Small sections.
  • § 7 Vojta’s proof in the number field case.
  • § 8 Lang’s conjecture.
  • § 9 Proof of Faltings’ theorem.
  • § 10 An elementary proof of Mordell’s conjecture.
  • § 11 ?-adic representations attached to abelian varieties.