Conjectures in Arithmetic Algebraic Geometry von Wilfred W. J. Hulsbergen | A Survey | ISBN 9783528064334

Conjectures in Arithmetic Algebraic Geometry

A Survey

von Wilfred W. J. Hulsbergen
Buchcover Conjectures in Arithmetic Algebraic Geometry | Wilfred W. J. Hulsbergen | EAN 9783528064334 | ISBN 3-528-06433-1 | ISBN 978-3-528-06433-4

Conjectures in Arithmetic Algebraic Geometry

A Survey

von Wilfred W. J. Hulsbergen

Inhaltsverzeichnis

  • 1 The zero-dimensional case: number fields.
  • 1.1 Class Numbers.
  • 1.2 Dirichlet L-Functions.
  • 1.3 The Class Number Formula.
  • 1.4 Abelian Number Fields.
  • 1.5 Non-abelian Number Fields and Artin L-Functions.
  • 2 The one-dimensional case: elliptic curves.
  • 2.1 General Features of Elliptic Curves.
  • 2.2 Varieties over Finite Fields.
  • 2.3 L-Functions of Elliptic Curves.
  • 2.4 Complex Multiplication and Modular Elliptic Curves.
  • 2.5 Arithmetic of Elliptic Curves.
  • 2.6 The Tate-Shafarevich Group.
  • 2.7 Curves of Higher Genus.
  • 2.8 Appendix.
  • 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.
  • 3.1 The Standard Conjectures.
  • 3.2 Deligne-Beilinson Cohomology.
  • 3.3 Deligne Homology.
  • 3.4 Poincaré Duality Theories.
  • 4 Riemann-Roch, K-theory and motivic cohomology.
  • 4.1 Grothendieck-Riemann-Roch.
  • 4.2 Adams Operations.
  • 4.3 Riemann-Roch for Singular Varieties.
  • 4.4 Higher Algebraic K-Theory.
  • 4.5 Adams Operations in Higher Algebraic K-Theory.
  • 4.6 Chern Classes in Higher Algebraic K-Theory.
  • 4.7 Gillet’s Riemann-Roch Theorem.
  • 4.8 Motivic Cohomology.
  • 5 Regulators, Deligne’s conjecture and Beilinson’s first conjecture.
  • 5.1 Borel’s Regulator.
  • 5.2 Beilinson’s Regulator.
  • 5.3 Special Cases and Zagier’s Conjecture.
  • 5.4 Riemann Surfaces.
  • 5.5 Models over Spec(Z).
  • 5.6 Deligne’s Conjecture.
  • 5.7 Beilinson’s First Conjecture.
  • 6 Beilinson’s second conjecture.
  • 6.1 Beilinson’s Second Conjecture.
  • 6.2 Hilbert Modular Surfaces.
  • 7 Arithmetic intersections and Beilinson’s third conjecture.
  • 7.1 The Intersection Pairing.
  • 7.2 Beilinson’s Third Conjecture.
  • 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.
  • 8.1 The Hodge Conjecture.
  • 8.2 Absolute Hodge Cohomology.
  • 8.3 Geometric Interpretation.
  • 8.4Abel-Jacobi Maps.
  • 8.5 The Tate Conjecture.
  • 8.6 Absolute Hodge Cycles.
  • 8.7 Motives.
  • 8.8 Grothendieck’s Conjectures.
  • 8.9 Motives and Cohomology.
  • 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.
  • 9.1 Tate Modules.
  • 9.2 Mixed Realizations.
  • 9.3 Weights.
  • 9.4 Hodge and Tate Conjectures.
  • 9.5 The Homological Regulator.
  • 10 Examples and Results.
  • 10.1 B & S-D revisited.
  • 10.2 Deligne’s Conjecture.
  • 10.3 Artin and Dirichlet Motives.
  • 10.4 Modular Curves.
  • 10.5 Other Modular Examples.
  • 10.6 Linear Varieties.