Rational Points von Gerd Faltings | Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn | ISBN 9783528085933

Rational Points

Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn

von Gerd Faltings
Buchcover Rational Points | Gerd Faltings | EAN 9783528085933 | ISBN 3-528-08593-2 | ISBN 978-3-528-08593-3

Rational Points

Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn

von Gerd Faltings

Inhaltsverzeichnis

  • I: Moduli Spaces.
  • § 1 Introduction.
  • § 2 Generalities about moduli-Spaces.
  • § 3 Examples.
  • § 4 Metrics with logarithmic singularities.
  • § 5 The minimal compact if ication of Ag/?.
  • § 6 The toroidal compactification.
  • II: Heights.
  • § 1 The definition.
  • § 2 Néron-Tate heights.
  • § 3 Heights on the moduli-space.
  • § 4 Applications.
  • III: Some Facts from the Theory of Group Schemes.
  • § 0 Introduction.
  • § 1 Generalities on group schemes.
  • § 2 Finite group schemes.
  • § 3 p-divisible groups.
  • § 4 A theorem of Raynaud.
  • § 5 A theorem of Tate.
  • IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.
  • § 1 Statements.
  • § 2 Reductions.
  • § 3 Heights.
  • § 4 Variants.
  • V: The Finiteness Theorems of Faltings.
  • § 2 The finiteness theorem for isogeny classes.
  • § 3 The finiteness theorem for isomorphism classes.
  • § 4 Proof of Mordell’s conjecture.
  • § 5 Siegel’s Theorem on integer points.
  • VI: Complements.
  • § 2 Preliminaries.
  • § 3 The Tate-conjecture.
  • § 4 The Shafarevich-conjecture.
  • § 5 Endomorphisms.
  • § 6 Effectivity.
  • VII: Intersection Theory on Arithmetic Surfaces.
  • § 1 Hermitian line bundies.
  • § 2 Arakelov-divisors and intersection theory.
  • § 3 Volume forms on IRr(X, ?).
  • § 4 Riemann-Roch.
  • § 5 The Hodge index theorem.