
×
Rational Points
Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn
von Gerd FaltingsInhaltsverzeichnis
- I: Moduli Spaces.
- § 1 Introduction.
- § 2 Generalities about moduli-Spaces.
- § 3 Examples.
- § 4 Metrics with logarithmic singularities.
- § 5 The minimal compact if ication of Ag/?.
- § 6 The toroidal compactification.
- II: Heights.
- § 1 The definition.
- § 2 Néron-Tate heights.
- § 3 Heights on the moduli-space.
- § 4 Applications.
- III: Some Facts from the Theory of Group Schemes.
- § 0 Introduction.
- § 1 Generalities on group schemes.
- § 2 Finite group schemes.
- § 3 p-divisible groups.
- § 4 A theorem of Raynaud.
- § 5 A theorem of Tate.
- IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.
- § 1 Statements.
- § 2 Reductions.
- § 3 Heights.
- § 4 Variants.
- V: The Finiteness Theorems of Faltings.
- § 2 The finiteness theorem for isogeny classes.
- § 3 The finiteness theorem for isomorphism classes.
- § 4 Proof of Mordell’s conjecture.
- § 5 Siegel’s Theorem on integer points.
- VI: Complements.
- § 2 Preliminaries.
- § 3 The Tate-conjecture.
- § 4 The Shafarevich-conjecture.
- § 5 Endomorphisms.
- § 6 Effectivity.
- VII: Intersection Theory on Arithmetic Surfaces.
- § 1 Hermitian line bundies.
- § 2 Arakelov-divisors and intersection theory.
- § 3 Volume forms on IRr(X, ?).
- § 4 Riemann-Roch.
- § 5 The Hodge index theorem.