Abelian Group Theory | Proceedings of the 2nd New Mexico State University Conference, held at LasCruces, New Mexico, December 9 - 12, 1976 | ISBN 9783540084471

Abelian Group Theory

Proceedings of the 2nd New Mexico State University Conference, held at LasCruces, New Mexico, December 9 - 12, 1976

herausgegeben von D. Arnold, R. Hunter und E. Walker
Mitwirkende
Herausgegeben vonD. Arnold
Herausgegeben vonR. Hunter
Herausgegeben vonE. Walker
Buchcover Abelian Group Theory  | EAN 9783540084471 | ISBN 3-540-08447-9 | ISBN 978-3-540-08447-1

Abelian Group Theory

Proceedings of the 2nd New Mexico State University Conference, held at LasCruces, New Mexico, December 9 - 12, 1976

herausgegeben von D. Arnold, R. Hunter und E. Walker
Mitwirkende
Herausgegeben vonD. Arnold
Herausgegeben vonR. Hunter
Herausgegeben vonE. Walker

Inhaltsverzeichnis

  • The structure of mixed abelian groups.
  • Decomposition bases and Ulm’s theorem.
  • The structure of p-trees: Algebraic systems related to abelian groups.
  • A Guide to valuated groups.
  • Warfield modules.
  • Finite valuated groups.
  • Criteria for freeness in groups and valuated vector spaces.
  • Subfree valued vector spaces.
  • On classifying torsion free modules over discrete valuation rings.
  • A sheaf - Theoretic interpretation of the kuroš theorem.
  • Genera and direct sum decompositions of torsion free modules.
  • Quasi-pure-injectivity and quasi-pure projectivity.
  • Sur les groupes quasi-p-nets injectifs et projectifs.
  • Whitehead’s problem.
  • Methods of logic in abelian group theory.
  • Abelian structures I.
  • The number of ? — Free abelian groups and the size of Ext.
  • The Jacobson radical of some endomorphism rings.
  • Ulm valuations and co-valuations on torsion-complete p-groups.
  • A result on problem 87 of L. Fuchs.
  • Local-quasi-endomorphism rings of rank one mixed abelian groups.
  • Homological dimension and abelian groups.
  • A galois correspondence in abelian groups.
  • A different completion functor.
  • Analogues of the Stacked Bases Theorem.
  • Commutative rings whose finitely generated modules are direct sums of cyclics.