The Structure of Attractors in Dynamical Systems | Proceedings, North Dakota State University, June 20-24, 1977 | ISBN 9783540089254

The Structure of Attractors in Dynamical Systems

Proceedings, North Dakota State University, June 20-24, 1977

herausgegeben von N.G. Markley, J.C. Martin und W. Perrizo
Mitwirkende
Herausgegeben vonN.G. Markley
Herausgegeben vonJ.C. Martin
Herausgegeben vonW. Perrizo
Buchcover The Structure of Attractors in Dynamical Systems  | EAN 9783540089254 | ISBN 3-540-08925-X | ISBN 978-3-540-08925-4

The Structure of Attractors in Dynamical Systems

Proceedings, North Dakota State University, June 20-24, 1977

herausgegeben von N.G. Markley, J.C. Martin und W. Perrizo
Mitwirkende
Herausgegeben vonN.G. Markley
Herausgegeben vonJ.C. Martin
Herausgegeben vonW. Perrizo

Inhaltsverzeichnis

  • Finitistic coding for shifts of finite type.
  • Periodic points and lefschetz numbers.
  • Entropy and the fundamental group.
  • Isolated invariant sets of parameterized systems of differential equations.
  • A transition from hopf bifurcation to chaos: Computer experiments with maps on R2.
  • Transverse heteroclinic orbits in the Anisotropic Kepler Problem.
  • A note on a distallity theorem of C. C. Moore.
  • Chain transitivity and the domain of influence of an invariant set.
  • Cohomology of flows.
  • The structure of smale diffeomorphisms.
  • The finite multipliers of infinite ergodic transformations.
  • Applications of ergodic theory to geometry.
  • On expansive homeomorphisms of the infinite torus.
  • Shape theory and dynamical systems.
  • On a theorem of sell.
  • Lifting in non-abelian (G,?)-extensions.
  • Recipe minimal sets.
  • Large sets of endomorphisms and of g-measures.
  • A linearization process for flows.
  • to the Closing Lemma.
  • On the pseudo orbit tracing property and its relationship to stability.
  • A reformulation of Coleman's conjecture concerning the local conjugacy of topologically hyperbolic singular points.
  • Ergodic actions and stochastic processes on groups and homogeneous spaces.