Multigrid Methods | Proceedings of the Conference Held at Köln-Porz, November 23-27, 1981 | ISBN 9783540119555

Multigrid Methods

Proceedings of the Conference Held at Köln-Porz, November 23-27, 1981

herausgegeben von W. Hackbusch und U. Trottenberg
Mitwirkende
Herausgegeben vonW. Hackbusch
Herausgegeben vonU. Trottenberg
Buchcover Multigrid Methods  | EAN 9783540119555 | ISBN 3-540-11955-8 | ISBN 978-3-540-11955-5

Multigrid Methods

Proceedings of the Conference Held at Köln-Porz, November 23-27, 1981

herausgegeben von W. Hackbusch und U. Trottenberg
Mitwirkende
Herausgegeben vonW. Hackbusch
Herausgegeben vonU. Trottenberg

Inhaltsverzeichnis

  • Multigrid methods: Fundamental algorithms, model problem analysis and applications.
  • Multi-grid convergence theory.
  • Guide to multigrid development.
  • The multi grid method and artificial viscosity.
  • Defect corrections and multigrid iterations.
  • On multigrid methods of the two-level type.
  • The convergence rate of a multigrid method with Gauss-Seidel relaxation for the poisson equation.
  • A multigrid finite element method for the transonic potential equation.
  • Sparse matrix software for elliptic PDE’s.
  • Multigrid software for the solution of elliptic problems on rectangular domains: MGOO (release 1).
  • On multi-grid iterations with defect correction.
  • Adaptive-grid methods for time-dependent partial differential equations.
  • Mixed defect correction iteration for the accurate solution of the convection diffusion equation.
  • Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods.
  • The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems.
  • Application of the multigrid method to a nonlinear indefinite problem.
  • Multi-grid methods for simple bifurcation problems.
  • Use of the multigrid method for laplacian problems in three dimensions.
  • Applications of multi-grid methods for transonic flow calculations.
  • A robust and efficient multigrid method.