Trends and Applications of Pure Mathematics to Mechanics | Invited and Contributed Papers presented at a Symposium at Ecole Polytechnique, Palaiseau, France, November 28 – December 2, 1983 | ISBN 9783540129165

Trends and Applications of Pure Mathematics to Mechanics

Invited and Contributed Papers presented at a Symposium at Ecole Polytechnique, Palaiseau, France, November 28 – December 2, 1983

herausgegeben von P.G. Ciarlet und M. Roseau
Mitwirkende
Herausgegeben vonP.G. Ciarlet
Herausgegeben vonM. Roseau
Buchcover Trends and Applications of Pure Mathematics to Mechanics  | EAN 9783540129165 | ISBN 3-540-12916-2 | ISBN 978-3-540-12916-5

Trends and Applications of Pure Mathematics to Mechanics

Invited and Contributed Papers presented at a Symposium at Ecole Polytechnique, Palaiseau, France, November 28 – December 2, 1983

herausgegeben von P.G. Ciarlet und M. Roseau
Mitwirkende
Herausgegeben vonP.G. Ciarlet
Herausgegeben vonM. Roseau

Inhaltsverzeichnis

  • Minimizers and the edler-lagrange equations.
  • Geometrical methods in some bifurcation problems of elasticity.
  • Conservation laws without convexity.
  • Conservation laws and compensated compactness.
  • Homogeneisation materiaux composites.
  • Existence problems of the non-linear Boltzmann equation.
  • Numerical simulation for some applied problems originating from continuum mechanics.
  • Linear problems associated to the theory of elastic continua with finite deformations.
  • One-dimensional structured phase transitions on finite intervals.
  • Global existence and asymptotics in one-dimensional nonlinear viscoelasticity.
  • Discrete velocity models and the Boltzmann equation.
  • Formation of singularities in elastic waves.
  • Solitary waves under external forcing.
  • Sur Les Solutions De L'equation De Schrödinger Atomique Et Le Cas Particulier De Deux Electrons.
  • On homogenization problems.
  • Hamiltonian and non-Hamiltonian models for water waves.
  • On a class of live traction problems in elasticity.
  • Some viscous-dominated flows.
  • Initial value problems for viscoelastic liquids.
  • Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses.
  • Stress tensors, Riemannian metrics and the alternative descriptions in elasticity.
  • Etude des oscilaltions dans les equations aux derivees partielles non lineaires.
  • Invariant manifolds and periodic solutions of three degrees of freedom Hamiltonian systems.