
×
Inhaltsverzeichnis
- 1. Introduction.
- Table 1.1. Monographs and other general references.
- 2. One-particle problems.
- 2.1. Special relativity and the old quantum theory.
- 2.2. On the Klein-Gordon equation.
- 2.3. The Dirac equation.
- 3. Quantum electrodynamical effects.
- Table 3.1. Higher-order corrections: methods.
- Table 3.2. Higher-order corrections: hyperfine interactions.
- Table 3.3. Higher-order corrections: energy levels.
- Table 3.4. Higher-order corrections: interatomic and -molecular interactions.
- 4. Multielectron atoms: methods.
- Table 4.1. General methods and basic theory for multielectron atoms.
- Table 4.2. Published programs for atoms.
- Table 4.3. Numerical, non-statistical four-component methods.
- Table 4.4. Four-component LCAO approaches for many-electron atoms.
- Table 4.5. Various four-component local-density methods.
- Table 4.6. Thomas-Fermi calculations.
- Table 4.7. Independent-particle models.
- Table 4.8. Definitions, reviews and background for effective potential calculations.
- Table 4.9. Effective-potential methods.
- Table 4.10. Available relativistic effective potentials.
- Table 4.11. One-component and perturbation calculations.
- Table 4.12. (1/Z- and other similar expansions for many-electron atoms.
- 5. Multielectron atoms: results.
- Table 5.1. Tabulations of atomic ground-state properties.
- Table 5.2. Data on atomic energy levels.
- Table 5.3. Auger and autoionization processes.
- Table 5.4. Ionization potentials and electron affinities.
- Table 5.5. Supercritical (Z > 137) systems.
- Table 5.6. Electromagnetic transition probabilities.
- Table 5.7. Polarisabilities and screening constants.
- Table 5.8. Electric and magnetic hyperfine properties.
- Table 5.9. Average radii and magnetic g-factors.
- Table 5.10. Compton profiles, momentum distributions and spin densities.
- Table 5.11. X-ray scattering factors.
- Table 5.12. Electron and positron scattering.
- Table 5.13. Particle-atom collisions..
- Table 5.14. Photon scattering and photoionization.
- Table 5.15. Atom-atom collisions and interatomic potentials.
- Table 5.16. Nuclear processes involving electronic wave functions.
- Table 5.17. Parity-violation effects in atoms and molecules.
- 6. Symmetry.
- Table 6.1. Theory of double groups and related aspects.
- Table 6.2. Available data for double groups.
- Table 6.3. Time-reversal symmetry and related questions.
- 7. Molecular calculations.
- Table 7.1. One-electron systems.
- Table 7.2. LCAO-DF calculations on molecules.
- Table 7.3. Molecules treated by the DF-OCE method.
- Table 7.4. Molecules treated by the DS-DVM method.
- Table 7.5. Molecules treated by the DS-MS X? method.
- Table 7.6. Molecules treated by the quasirelativistic DS-MS X? approach.
- Table 7.7. Molecules treated by pseudopotential methods.
- Table 7.8. Molecules treated by the Perturbative Hartree-Fock-Slater (P-HFS) method.
- Table 7.9. First-order perturbation theory on molecules.
- Table 7.10. Density functional calculations1.
- Table 7.11. Semiempirical methods.
- Table 7.12. Relativistic crystal field theory.
- Table 7.13. Relativistic theories of molecular properties.
- 8. Solid-state theory.
- Table 8.1. Band-structure calculations..
- 9. Relativistic effects and heavy-element chemistry.
- Table 9.1. “Relativity and the periodic system”. Periodic trends, reviews and pedagogical papers.
- Table 9.2. Bond lengths.
- Table 9.3. Dissociation and interaction energies.
- Table 9.4. Force constants.
- Table 9.5. Molecular fine-structure splittings.
- Table 9.6. Magnetic resonance parameters.
- Table 9.7. Electric dipole moments and molecular charge distributions.
- Table 9.8. Molecularenergy levels and energy transfer.
- Table 9.9. Molecular ionization potentials and electron affinities.
- Some comments on notations and terminology.
- List of acronyms and symbols.