Hypervirial Theorems von Francisco M. Fernandez | ISBN 9783540171706

Hypervirial Theorems

von Francisco M. Fernandez und Eduardo Alberto Castro
Mitwirkende
Autor / AutorinFrancisco M. Fernandez
Autor / AutorinEduardo Alberto Castro
Buchcover Hypervirial Theorems | Francisco M. Fernandez | EAN 9783540171706 | ISBN 3-540-17170-3 | ISBN 978-3-540-17170-6

Hypervirial Theorems

von Francisco M. Fernandez und Eduardo Alberto Castro
Mitwirkende
Autor / AutorinFrancisco M. Fernandez
Autor / AutorinEduardo Alberto Castro

Inhaltsverzeichnis

  • A.
  • I. Hypervirial Theorems and Exact Solutions of the Schrödinger Equation.
  • II. Hypervirial Theorems and Perturbation Theory.
  • III. Hypervirial Theorems and the Variational Theorem.
  • IV. Non Diagonal Hypervirial Theorems and Approximate Functions.
  • V. Hypervirial Functions and Self-Consistent Field Functions.
  • VI. Perturbation Theory Without Wave Function.
  • B.
  • VII. Importance of the Different Boundary Conditions.
  • VIII. Hypervirial Theorems for 1D Finite Systems. General Boundary Conditions.
  • IX. Hypervirial Theorems for 1D Finite Systems. Dirichlet Boundary Conditions.
  • X. Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditions.
  • XI. Hypervirial Theorems for Finite Multidimensional Systems.
  • Special Topics.
  • 46. Hypervirial theorems and statistical quantum mechanics.
  • 47. Hypervirial theorems and semiclassica1 approximation.
  • Numerical results.
  • References.
  • Appendix I. Evolution operators.
  • Appendix II. Hamiltonian of an isolated N-particles system.
  • Appendix III. Project ion operators.
  • Appendix IV. Perturbation theory.
  • Appendix V. Differentiation of matrices and determinants.
  • Apendix VI. Dynamics of systems with time independent Hamiltonians.
  • Appendix VII. Elements of probability theory for continuous random variables.
  • Appendix VIII. Electrons in crystal lattices.
  • Appendix IX. Numerical integration of the Schrödinger equation.
  • Appendix X. Expansion in cthz series and polynomial power coefficients.
  • Bibliography and References for Appendices.
  • Program I.
  • Program II.
  • Program III.
  • Program IV.
  • Program V.
  • Program VI.
  • Program VII.
  • Program VIII.
  • Program IX.
  • Program X.
  • Program XI.
  • Program XII.
  • Program XIII.
  • Program XIV.
  • Program XV.
  • Program XVI.
  • Program XVII.