Formal Concept Analysis | 5th International Conference, ICFCA 2007, Clermont-Ferrand, France, February 12-16, 2007, Proceedings | ISBN 9783540708285

Formal Concept Analysis

5th International Conference, ICFCA 2007, Clermont-Ferrand, France, February 12-16, 2007, Proceedings

herausgegeben von Sergei O. Kuznetsov und Stefan Schmidt
Mitwirkende
Herausgegeben vonSergei O. Kuznetsov
Herausgegeben vonStefan Schmidt
Buchcover Formal Concept Analysis  | EAN 9783540708285 | ISBN 3-540-70828-6 | ISBN 978-3-540-70828-5

Formal Concept Analysis

5th International Conference, ICFCA 2007, Clermont-Ferrand, France, February 12-16, 2007, Proceedings

herausgegeben von Sergei O. Kuznetsov und Stefan Schmidt
Mitwirkende
Herausgegeben vonSergei O. Kuznetsov
Herausgegeben vonStefan Schmidt

Inhaltsverzeichnis

  • Relational Galois Connections.
  • Semantology as Basis for Conceptual Knowledge Processing.
  • A New and Useful Syntactic Restriction on Rule Semantics for Tabular Datasets.
  • A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data.
  • Computing Intensions of Digital Library Collections.
  • Custom Asymmetric Page Split Generalized Index Search Trees and Formal Concept Analysis.
  • The Efficient Computation of Complete and Concise Substring Scales with Suffix Trees.
  • A Parameterized Algorithm for Exploring Concept Lattices.
  • About the Lossless Reduction of the Minimal Generator Family of a Context.
  • Some Notes on Pseudo-closed Sets.
  • Performances of Galois Sub-hierarchy-building Algorithms.
  • Galois Connections Between Semimodules and Applications in Data Mining.
  • On Multi-adjoint Concept Lattices: Definition and Representation Theorem.
  • Base Points, Non-unit Implications, and Convex Geometries.
  • Lattices of Relatively Axiomatizable Classes.
  • A Solution of the Word Problem for Free Double Boolean Algebras.
  • On the MacNeille Completion of Weakly Dicomplemented Lattices.
  • Polynomial Embeddings and Representations.
  • The Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices.
  • Bipartite Ferrers-Graphs and Planar Concept Lattices.