Kernel Based Algorithms for Mining Huge Data Sets von Te-Ming Huang | Supervised, Semi-supervised, and Unsupervised Learning | ISBN 9783642068560

Kernel Based Algorithms for Mining Huge Data Sets

Supervised, Semi-supervised, and Unsupervised Learning

von Te-Ming Huang, Vojislav Kecman und Ivica Kopriva
Mitwirkende
Autor / AutorinTe-Ming Huang
Autor / AutorinVojislav Kecman
Autor / AutorinIvica Kopriva
Buchcover Kernel Based Algorithms for Mining Huge Data Sets | Te-Ming Huang | EAN 9783642068560 | ISBN 3-642-06856-1 | ISBN 978-3-642-06856-0

Kernel Based Algorithms for Mining Huge Data Sets

Supervised, Semi-supervised, and Unsupervised Learning

von Te-Ming Huang, Vojislav Kecman und Ivica Kopriva
Mitwirkende
Autor / AutorinTe-Ming Huang
Autor / AutorinVojislav Kecman
Autor / AutorinIvica Kopriva

„Kernel Based Algorithms for Mining Huge Data Sets“ is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.