
From the reviews:
“Modular Invariant Theory is a fitting entry into the ‘Encyclopaedia of mathematical Sciences’ series: it deals with important living mathematics in a way suited to researchers both at the rookie and more advanced levels.” (Michael Berg, The Mathematical Association of America, March, 2011)
“Provide the necessary background in commutative algebra, algebraic geometry, monomial orderings, and SAGBI bases and give many examples. The book should be accessible to second or third year graduate students and will bring any reader up to date on an active area of research.” (Frank D. Grosshans, Mathematical Reviews, Issue 2012 b)
“The book is a good source for examples and inspirations in modular invariant theory. … it is well suited for researchers who aim to get a feeling for recent problems in modular invariant theory and related problems. It can also be used as a companion book for a graduate course in invariant theory of finite groups with a view towards the differences to the modular case.” (Peter Schenzel, Zentralblatt MATH, Vol. 1216, 2011)