Diophantine Equations and Inequalities in Algebraic Number Fields von Yuan Wang | ISBN 9783642634895

Diophantine Equations and Inequalities in Algebraic Number Fields

von Yuan Wang
Buchcover Diophantine Equations and Inequalities in Algebraic Number Fields | Yuan Wang | EAN 9783642634895 | ISBN 3-642-63489-3 | ISBN 978-3-642-63489-5

Diophantine Equations and Inequalities in Algebraic Number Fields

von Yuan Wang

Inhaltsverzeichnis

  • 1. The Circle Method and Waring’s Problem.
  • 1.1 Introduction.
  • 1.2 Farey Division.
  • 1.3 Auxiliary Lemmas.
  • 1.4 Major Arcs.
  • 1.5 Singular Integral.
  • 1.6 Singular Series.
  • 1.7 Proof of Lemma 1.12.
  • 1.8 Proof of Theorem 1.1.
  • Notes.
  • 2. Complete Exponential Sums.
  • 2.1 Introduction.
  • 2.2 Several Lemmas.
  • 2.3 Mordell’s Lemma.
  • 2.4 Fundamental Lemma.
  • 2.5 Proof of Theorem 2.1.
  • 2.6 Proof of Theorem 2.2.
  • 3. Weyl’s Sums.
  • 3.1 Introduction.
  • 3.2 Proof of Theorem 3.1.
  • 3.3 A Lemma on Units.
  • 3.4 The Asymptotic Formula for N(a, T).
  • 3.5 A Sum.
  • 3.6 Mitsui’s Lemma.
  • 3.7 Proof of Theorem 3.3.
  • 3.8 Proof of Lemma 3.6.
  • 3.9 Continuation.
  • 4. Mean Value Theorems.
  • 4.1 Introduction.
  • 4.2 Proof of Theorem 4.1.
  • 4.3 Proof of Theorem 4.2.
  • 4.4 A Lemma on the Set D.
  • 4.5 A Lemma on the Set D(x).
  • 4.6 Fundamental Lemma.
  • 4.7 Proof of Lemma 4.1.
  • 5. The Circle Method in Algebraic Number Fields.
  • 5.1 Introduction.
  • 5.2 Lemmas.
  • 5.3 Asympotic Expansion forSi (?, T).
  • 5.4 Further Estimates on Basic Domains.
  • 5.5 Proof of Theorem 5.1.
  • 5.6 Proof of Theorem 5.2.
  • 6. Singular Series and Singular Integrals.
  • 6.1 Introduction.
  • 6.2 Product Form for Singular Series.
  • 6.3 Singular Series and Congruences.
  • 6.4 p-adic Valuations.
  • 6.5 k-th Power Residues.
  • 6.6 Proof of Theorem 6.1.
  • 6.7 Monotonic Functions.
  • 6.8 Proof of Theorem 6.2.
  • 7. Waring’s Problem.
  • 7.1 Introduction.
  • 7.2 The Ring Jk.
  • 7.3 Proofs of Theorems 7.1 and 7.2.
  • 7.4 Proof of Theorem 7.3.
  • 7.5 Proof of Theorem 7.4.
  • 8. Additive Equations.
  • 8.1 Introduction.
  • 8.2 Reductions.
  • 8.3 Contraction.
  • 8.4 Derived Variables.
  • 8.5 Proof of Theorem 8.1.
  • 8.6 Proof of Theorem 8.2.
  • 8.7 Bounds for Solutions.
  • 9. Small Nonnegative Solutions of Additive Equations.
  • 9.1 Introduction.
  • 9.2Hurwitz’s Lemma.
  • 9.3 Reductions.
  • 9.4 Continuation.
  • 9.5 Farey Division.
  • 9.6 Supplementary Domain.
  • 9.7 Basic Domains.
  • 9.8 Proof of Theorem 9.1.
  • 10. Small Solutions of Additive Equations.
  • 10.1 Introduction.
  • 10.2 Reductions.
  • 10.3 Continuation.
  • 10.4 Farey Division.
  • 10.5 Supplementary Domain.
  • 10.6 Basic Domains.
  • 10.7 Proof of Theorem 10.1.
  • 11. Diophantine Inequalities for Forms.
  • 11.1 Introduction.
  • 11.2 A Single Additive Form.
  • 11.3 A Variant Circle Method.
  • 11.4 Continuation.
  • 11.5 Proof of Lemma 11.1.
  • 11.6 Linear Forms.
  • 11.7 A Single Form.
  • 11.8 Proof of Theorem 11.1.
  • References I.
  • References II.