Finite Element Methods in Linear Ideal Magnetohydrodynamics von Ralf Gruber | ISBN 9783642867101

Finite Element Methods in Linear Ideal Magnetohydrodynamics

von Ralf Gruber und Jacques Rappaz
Mitwirkende
Autor / AutorinRalf Gruber
Autor / AutorinJacques Rappaz
Buchcover Finite Element Methods in Linear Ideal Magnetohydrodynamics | Ralf Gruber | EAN 9783642867101 | ISBN 3-642-86710-3 | ISBN 978-3-642-86710-1

Finite Element Methods in Linear Ideal Magnetohydrodynamics

von Ralf Gruber und Jacques Rappaz
Mitwirkende
Autor / AutorinRalf Gruber
Autor / AutorinJacques Rappaz

Inhaltsverzeichnis

  • 1. Finite Element Methods for the Discretization of Differential Eigenvalue Problems.
  • 1.1 A Classical Model Problem.
  • 1.2 A Non-Standard Model Problem.
  • 1.3 Spectral Stability.
  • 1.5 Some Comments.
  • 2. The Ideal MHD Model.
  • 2.1 Basic Equations.
  • 2.2 Static Equilibrium.
  • 2.3 Linearized MHD Equations.
  • 2.4 Variational Formulation.
  • 2.5 Stability Considerations.
  • 2.6 Mechanical Analogon.
  • 3. Cylindrical Geometry.
  • 3.1 MHD Equations in Cylindrical Geometry.
  • 3.2 Six Test Cases.
  • 3.3 Approximations.
  • 3.4 Polluting Finite Elements.
  • 3.6 Non-Conforming Non-Polluting Elements.
  • 3.7 Applications and Comparison Studies (with M.
  • A. Secrétan).
  • 3.8 Discussion and Conclusion.
  • 4. Two-Dimensional Finite Elements Applied to Cylindrical Geometry.
  • 4.1 Conforming Finite Elements.
  • 4.2 Non-Conforming, Finite Hybrid Elements.
  • 4.3 Discussion.
  • 5. ERATO: Application to Toroidal Geometry.
  • 5.1 Static Equilibrium.
  • 5.2 Mapping of (?, ?) into (?, ?) Coordinates in ? p.
  • 5.3 Variational Formulation of the Potential and Kinetic Energies..
  • 5.4 Variational Formulation of the Vacuum Energy.
  • 5.5 Finite Hybrid Elements.
  • 5.6 Extraction of the Rapid Angular Variation.
  • 5.7 Calculation of ?-Limits (with F. Troyon).
  • 6. HERA: Application to Helical Geometry (Peter Merkel, IPP Garching).
  • 6.1 Equilibrium.
  • 6.2 Variational Formulation of the Stability Problem.
  • 6.3 Applications.
  • 7. Similar Problems.
  • 7.1 Similar Problems in Plasma Physics.
  • 7.2 Similar Problems in Other Domains.
  • Appendices.
  • A: Variational Formulation of the Ballooning Mode Criterion.
  • B.1 The Problem.
  • B.2 Two Numberings of the Components.
  • B.3 Resolution for Numbering (D1).
  • B.4 Resolution for Numbering (D2).
  • B.5 Higher Order Finite Elements.
  • C: Organization of ERATO.
  • D: Listing of ERATO 3 (with R. Iacono).
  • References.