Conformal Groups and Related Symmetries Physical Results and Mathematical Background | Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University o | ISBN 9783662144824

Conformal Groups and Related Symmetries Physical Results and Mathematical Background

Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University o

herausgegeben von A.O. Barut und Heinz D. Doebner
Mitwirkende
Herausgegeben vonA.O. Barut
Herausgegeben vonHeinz D. Doebner
Buchcover Conformal Groups and Related Symmetries Physical Results and Mathematical Background  | EAN 9783662144824 | ISBN 3-662-14482-4 | ISBN 978-3-662-14482-4

Conformal Groups and Related Symmetries Physical Results and Mathematical Background

Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University o

herausgegeben von A.O. Barut und Heinz D. Doebner
Mitwirkende
Herausgegeben vonA.O. Barut
Herausgegeben vonHeinz D. Doebner

Inhaltsverzeichnis

  • From Heisenberg algebra to conformal dynamical group.
  • $$\overline {SL}$$ (4, R) dynamical symmetry for hadrons.
  • A new quantum relativistic oscillator and the hadron mass spectrum.
  • Path integral realization of a dynamical group.
  • Polynomial identities associated with dynamical symmetries.
  • De — sitter representations and the particle concept, studied in an ur-theoretical cosmological model.
  • The structure of local algebras in quantum field theory.
  • Does supergravity allow a positive cosmological constant.
  • Photons and gravitons in conformal field theory.
  • On conformally covariant energy momentum tensor and vacuum solutions.
  • The holonomy operator in Yang-Mills theory.
  • Conformal geodesics.
  • Second order conformal structures.
  • The conformal structure of Einstein's field equations.
  • Nonrelativistic conformal symetries and Bargmann structures.
  • Wave equations for conformal multispinors.
  • Global conformal transformations of spinor fields.
  • Pure spinors for conformal extensions of space-time.
  • Complex Clifford analysis over the Lie ball.
  • Plancherel theorem for the universal cover of the conformal group.
  • Harmonic analysis on rank one symmetric spaces.
  • A spin-off from highest weight representations; conformal covariants, in particular for 0(3,2).
  • Tensor calculus in enveloping algebras.
  • Representations of the Lorentz Algebra on the space of its universal enveloping algebra.
  • Reducible representations of the extended conformal superalgebra and invariant differential operators.
  • All positive energy unitary irreducible representations of the extended conformal superalgebra.
  • The two-dimensional quantum conformal group, strings and lattices.
  • Finite-size scaling and irreducible representations of virasoro algebras.
  • Unitarizable highest weight representations of theVirasoro, Neveu-Schwarz and Ramond algebras.
  • Structure of Kac-Moody groups.
  • Infinite dimensional lie algebras connected with the four-dimensional laplace operator.
  • Infinite dimensional lie algebras in conformal QFT models.