Conformal Groups and Related Symmetries Physical Results and Mathematical Background | Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University of Clausthal, Germany August 12–14, 1985 | ISBN 9783662144824

Conformal Groups and Related Symmetries Physical Results and Mathematical Background

Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University of Clausthal, Germany August 12–14, 1985

herausgegeben von A.O. Barut und Heinz D. Doebner
Mitwirkende
Herausgegeben vonA.O. Barut
Herausgegeben vonHeinz D. Doebner
Buchcover Conformal Groups and Related Symmetries Physical Results and Mathematical Background  | EAN 9783662144824 | ISBN 3-662-14482-4 | ISBN 978-3-662-14482-4

Conformal Groups and Related Symmetries Physical Results and Mathematical Background

Proceedings of a Symposium Held at the Arnold Sommerfeld Institute for Mathematical Physics (ASI) Technical University of Clausthal, Germany August 12–14, 1985

herausgegeben von A.O. Barut und Heinz D. Doebner
Mitwirkende
Herausgegeben vonA.O. Barut
Herausgegeben vonHeinz D. Doebner

Inhaltsverzeichnis

  • From Heisenberg algebra to conformal dynamical group.
  • $$\overline {SL}$$ (4, R) dynamical symmetry for hadrons.
  • A new quantum relativistic oscillator and the hadron mass spectrum.
  • Path integral realization of a dynamical group.
  • Polynomial identities associated with dynamical symmetries.
  • De — sitter representations and the particle concept, studied in an ur-theoretical cosmological model.
  • The structure of local algebras in quantum field theory.
  • Does supergravity allow a positive cosmological constant.
  • Photons and gravitons in conformal field theory.
  • On conformally covariant energy momentum tensor and vacuum solutions.
  • The holonomy operator in Yang-Mills theory.
  • Conformal geodesics.
  • Second order conformal structures.
  • The conformal structure of Einstein's field equations.
  • Nonrelativistic conformal symetries and Bargmann structures.
  • Wave equations for conformal multispinors.
  • Global conformal transformations of spinor fields.
  • Pure spinors for conformal extensions of space-time.
  • Complex Clifford analysis over the Lie ball.
  • Plancherel theorem for the universal cover of the conformal group.
  • Harmonic analysis on rank one symmetric spaces.
  • A spin-off from highest weight representations; conformal covariants, in particular for 0(3,2).
  • Tensor calculus in enveloping algebras.
  • Representations of the Lorentz Algebra on the space of its universal enveloping algebra.
  • Reducible representations of the extended conformal superalgebra and invariant differential operators.
  • All positive energy unitary irreducible representations of the extended conformal superalgebra.
  • The two-dimensional quantum conformal group, strings and lattices.
  • Finite-size scaling and irreducible representations of virasoro algebras.
  • Unitarizable highest weight representations of theVirasoro, Neveu-Schwarz and Ramond algebras.
  • Structure of Kac-Moody groups.
  • Infinite dimensional lie algebras connected with the four-dimensional laplace operator.
  • Infinite dimensional lie algebras in conformal QFT models.