Vibration Problems in Structures von Hugo Bachmann | Practical Guidelines | ISBN 9783764351489

Vibration Problems in Structures

Practical Guidelines

von Hugo Bachmann und weiteren
Mitwirkende
Autor / AutorinHugo Bachmann
Autor / AutorinWalter J. Ammann
Autor / AutorinFlorian Deischl
Autor / AutorinJosef Eisenmann
Autor / AutorinIngomar Floegl
Autor / AutorinGerhard H. Hirsch
Autor / AutorinGünter K. Klein
Autor / AutorinGöran J. Lande
Autor / AutorinOskar Mahrenholtz
Autor / AutorinHans G. Natke
Autor / AutorinHans Nussbaumer
Autor / AutorinAnthony J. Pretlove
Autor / AutorinJohann H. Rainer
Autor / AutorinErnst-Ulrich Saemann
Autor / AutorinLorenz Steinbeisser
Buchcover Vibration Problems in Structures | Hugo Bachmann | EAN 9783764351489 | ISBN 3-7643-5148-9 | ISBN 978-3-7643-5148-9

Vibration Problems in Structures

Practical Guidelines

von Hugo Bachmann und weiteren
Mitwirkende
Autor / AutorinHugo Bachmann
Autor / AutorinWalter J. Ammann
Autor / AutorinFlorian Deischl
Autor / AutorinJosef Eisenmann
Autor / AutorinIngomar Floegl
Autor / AutorinGerhard H. Hirsch
Autor / AutorinGünter K. Klein
Autor / AutorinGöran J. Lande
Autor / AutorinOskar Mahrenholtz
Autor / AutorinHans G. Natke
Autor / AutorinHans Nussbaumer
Autor / AutorinAnthony J. Pretlove
Autor / AutorinJohann H. Rainer
Autor / AutorinErnst-Ulrich Saemann
Autor / AutorinLorenz Steinbeisser

Inhaltsverzeichnis

  • 1 Vibrations induced by people.
  • 1.1 Pedestrian bridges.
  • 1.1.1 Problem description.
  • 1.1.2 Dynamic actions.
  • 1.1.3 Structural criteria.
  • a) Natural frequencies.
  • b) Damping.
  • c) Stiffness.
  • 1.1.4 Effects.
  • 1.1.5 Tolerable values.
  • 1.1.6 Simple design rules.
  • a) Tuning method.
  • b) Code method.
  • c) Calculation of upper bound response for one pedestrian.
  • d) Effects of several pedestrians.
  • 1.1.7 More advanced design rules.
  • 1.1.8 Remedial measures.
  • a) Stiffening.
  • b) Increased damping.
  • c) Vibration absorbers.
  • 1.2 Floors with walking people.
  • 1.2.1 Problem description.
  • 1.2.2 Dynamic actions.
  • 1.2.3 Structural criteria.
  • 1.2.4 Effects.
  • 1.2.5 Tolerable values.
  • 1.2.6 Simple design rules.
  • a) High tuning method.
  • b) Heel impact method.
  • 1.2.7 More advanced design rules.
  • 1.2.8 Remedial measures.
  • a) Shift of the natural frequency.
  • b) Non-structural elements.
  • 1.3 Floors for sport or dance activities.
  • 1.3.1 Problem description.
  • 1.3.2 Dynamic actions.
  • 1.3.3 Structural criteria.
  • 1.3.4 Effects.
  • 1.3.5 Tolerable values.
  • 1.3.6 Simple design rules.
  • 1.3.7 More advanced design rules.
  • 1.3.8 Remedial measures.
  • a) Raising the natural frequency by means of added stiffness.
  • b) Increasing structural damping.
  • c) Use of vibration absorbers.
  • 1.4 Floors with fixed seating and spectator galleries.
  • 1.4.1 Problem description.
  • 1.4.2 Dynamic actions.
  • 1.4.3 Structural criteria.
  • 1.4.4 Effects.
  • 1.4.5 Tolerable values.
  • 1.4.6 Simple design rules.
  • 1.4.7 More advanced design rules.
  • 1.4.8 Remedial measures.
  • 1.5 High-diving platforms.
  • 1.5.1 Problem description.
  • 1.5.2 Dynamic actions.
  • 1.5.3 Structural criteria.
  • 1.5.4 Effects.
  • 1.5.5 Tolerable values.
  • 1.5.6 Simple design rules.
  • a) Stiffness criteria.
  • b) Frequency criteria.
  • 1.5.7 More advanced design rules.
  • 1.5.8 Remedial measures.
  • References to Chapter 1.
  • 2 Machinery-induced vibrations.
  • 2.1 Machine foundations and supports.
  • 2.1.1 Problem description.
  • 2.1.2 Dynamic actions.
  • a) Causes.
  • b) Periodic excitation.
  • c) Transient excitation.
  • d) Stochastic excitation.
  • 2.1.3 Structural criteria.
  • 2.1.4 Effects.
  • a) Effects on structures.
  • b) Effects on people.
  • c) Effects on machinery and installations.
  • d) Effects due to structure-borne sound.
  • 2.1.5 Tolerable values.
  • a) General Aspects.
  • b) Structural criteria.
  • c) Physiological criteria.
  • d) Production-quality criteria.
  • e) Tolerable values relative to structure-borne sound.
  • 2.1.6 Simple design rules.
  • a) General.
  • b) Data desirable for the design of machine supports.
  • c) Measures for rotating or oscillating machines.
  • d) Measures for machines with impacting parts.
  • e) Rules for detailing and construction.
  • 2.1.7 More advanced design rules.
  • 2.1.8 Remedial measures.
  • 2.2 Bell towers.
  • 2.2.1 Problem description.
  • 2.2.2 Dynamic actions.
  • 2.2.3 Structural criteria.
  • 2.2.4 Effects.
  • 2.2.5 Tolerable values.
  • 2.2.6 Simple design rules.
  • 2.2.7 More advanced design rules.
  • 2.2.8 Remedial measures.
  • 2.3 Structure-borne sound.
  • 2.3.1 Problem description.
  • 2.3.2 Dynamic actions.
  • 2.3.3 Structural criteria.
  • 2.3.4 Effects.
  • 2.3.5 Tolerable values.
  • 2.3.6 Simple design rules.
  • a) Influencing the initiation.
  • b) Influencing the transmission.
  • 2.3.7 More advanced design rules.
  • 2.3.8 Remedial measures.
  • 2.4 Ground-transmitted vibrations.
  • 2.4.1 Problem description.
  • 2.4.2 Dynamic actions.
  • 2.4.3 Structural criteria.
  • 2.4.4 Effects.
  • 2.4.5 Tolerable values.
  • 2.4.6 Simple design rules.
  • a) Emission.
  • b) Transmission.
  • c) Immission.
  • 2.4.7 More advanced design rules.
  • 2.4.8 Remedial measures.
  • References to Chapter 2.
  • 3 Wind-induced vibrations.
  • 3.1 Buildings.
  • 3.1.1 Problem description.
  • 3.1.2 Dynamic actions.
  • 3.1.3 Structural criteria.
  • 3.1.4 Effects.
  • 3.1.5 Tolerable values.
  • 3.1.6 Simple design rules.
  • 3.1.7 More advanced design rules.
  • 3.1.8 Remedial measures.
  • a) Installation of damping elements.
  • b) Vibration absorbers.
  • 3.2 Towers.
  • 3.2.1 Problem description.
  • 3.2.2 Dynamic actions.
  • 3.2.3 Structural criteria.
  • 3.2.4 Effects.
  • 3.2.5 Tolerable values.
  • 3.2.6 Simple design rules.
  • 3.2.7 More advanced design rules.
  • 3.2.8 Remedial measures.
  • 3.3 Chimneys and Masts.
  • 3.3.1 Problem description.
  • 3.3.2 Dynamic actions.
  • 3.3.3 Structural criteria.
  • 3.3.4 Effects.
  • 3.3.5 Tolerable values.
  • 3.3.6 Simple design rules.
  • 3.3.7 More advanced design rules.
  • 3.3.8 Remedial measures.
  • 3.4 Guyed Masts.
  • 3.4.1 Problem description.
  • 3.4.2 Dynamic actions.
  • 3.4.3 Structural criteria.
  • 3.4.4 Effects.
  • 3.4.5 Tolerable values.
  • 3.4.6 Simple design rules.
  • 3.4.7 More advanced design rules.
  • 3.4.8 Remedial measures.
  • 3.5 Pylons.
  • 3.5.1 Problem description.
  • 3.5.2 Dynamic actions.
  • 3.5.3 Structural criteria.
  • 3.5.4 Effects.
  • 3.5.5 Tolerable values.
  • 3.5.6 Simple design rules.
  • 3.5.7 More advanced design rules.
  • 3.5.8 Remedial measures.
  • 3.6 Suspension and Cable-Stayed Bridges.
  • 3.6.1 Problem description.
  • 3.6.2 Dynamic actions.
  • 3.6.3 Structural criteria.
  • 3.6.4 Effects.
  • 3.6.5 Tolerable values.
  • 3.6.6 Simple design rules.
  • 3.6.7 More advanced design rules.
  • 3.6.8 Remedial measures.
  • 3.7 Cantilevered Roofs.
  • 3.7.1 Problem description.
  • 3.7.2 Dynamic actions.
  • 3.7.3 Structural criteria.
  • 3.7.4 Effects.
  • 3.7.5 Tolerable values.
  • 3.7.6 Simple design rules.
  • 3.7.7 More advanced design rules.
  • 3.7.8 Remedial measures.
  • References to Chapter 3.
  • 4 Vibrations induced by traffic and construction activity.
  • 4.1 Roads.
  • 4.1.1 Problem description.
  • 4.1.2 Dynamic actions.
  • 4.1.3 Structural criteria.
  • 4.1.4 Effects.
  • 4.1.5 Tolerable values.
  • 4.1.6 Simple design rules.
  • 4.1.7 More advanced design rules.
  • 4.1.8 Remedial measures.
  • 4.2 Railways.
  • 4.2.1 Problem description.
  • 4.2.2 Dynamic actions.
  • 4.2.3 Structural criteria.
  • 4.2.4 Effects.
  • 4.2.5 Tolerable values.
  • 4.2.6 Simple design rules.
  • a) General aspects.
  • b) Measures against increased vibration level.
  • 4.2.7 More advanced design rules.
  • 4.2.8 Remedial measures.
  • 4.3 Bridges.
  • 4.3.1 Problem description.
  • 4.3.2 Dynamic actions.
  • 4.3.3 Structural criteria.
  • 4.3.4 Effects.
  • 4.3.5 Tolerable values.
  • 4.3.6 Simple design rules.
  • 4.3.7 More advanced design rules.
  • 4.3.8 Remedial measures.
  • 4.4 Construction Work.
  • 4.4.1 Problem description.
  • 4.4.2 Dynamic actions.
  • 4.4.3 Structural criteria.
  • 4.4.4 Effects.
  • 4.4.5 Tolerable values.
  • 4.4.6 Simple rules.
  • a) Vehicles on construction sites.
  • b) Piling, sheet piling.
  • c) Vibratory compaction.
  • d) Dynamic consolidation.
  • e) Excavation.
  • f) Blasting.
  • 4.4.7 More advanced measures.
  • 4.4.8 Remedial measures.
  • References to Chapter 4.
  • A Basic vibration theory and its application to beams and plates.
  • A.1 Free vibration.
  • A.2 Forced vibration.
  • A.3 Harmonic excitation.
  • A.4 Periodic excitation.
  • A.4.1 Fourier analysis of the forcing function.
  • A.4.2 How the Fourier decomposition works.
  • A.4.3 The Fourier Transform.
  • A.5 Tuning of a structure.
  • A.6 Impedance.
  • A.7 Vibration Isolation (Transmissibility).
  • A.8 Continuous systems and their equivalent SDOF systems.
  • B Decibel Scales.
  • B.1 Sound pressure level.
  • B.2 Weighting of the sound pressure level.
  • C Damping.
  • C.1 Introduction.
  • C.2 Damping Quantities (Definitions, Interpretations).
  • C.3 Measurement of damping properties of structures.
  • C.3.1 Decay curve method.
  • C.3.2 Bandwidth method.
  • C.3.3 Conclusions.
  • C.4 Damping mechanisms in reinforced concrete.
  • C.5 Overall damping of a structure.
  • C.5.1 Damping of the bare structure.
  • C.5.2 Damping by non-structural elements.
  • C.5.3 Damping by energy radiation to the soil.
  • C.5.4 Overall damping.
  • D Tuned vibration absorbers.
  • D.1 Definition.
  • D.2 Modelling and differential equations of motion.
  • D.3 Optimum tuning and optimum damping of the absorber.
  • D.4 Practical hints.
  • E Wave Propagation.
  • E.1 Introduction.
  • E.2 Wave types and propagation velocities.
  • E.3 Attenuation laws.
  • F Behaviour of concrete and steel under dynamic actions.
  • F.1 Introduction.
  • F.2 Behaviour of concrete.
  • F.2.1 Modulus of elasticity.
  • F.2.2 Compressive strength.
  • F.2.3 Ultimate strain in compression.
  • F.2.4 Tensile strength.
  • F.2.5 Ultimate strain in tension.
  • F.2.6 Bond between reinforcing steel and concrete.
  • F.3 Behaviour of reinforcing steel.
  • F.3.1 Modulus of Elasticity.
  • F.3.2 Strength in Tension.
  • F.3.3 Strain in tension.
  • G Dynamic forces from rhythmical human body motions.
  • G.1 Rhythmical human body motions.
  • G.2 Representative types of activity.
  • G.3 Normalised dynamic forces.
  • H Dynamic effects from wind.
  • H.1 Basic theory.
  • H. l.1 Wind speed and pressure.
  • H. l.2 Statistical characteristics.
  • a) Gust spectrum.
  • b) Aerodynamic admittance function.
  • c) Spectral density of the wind force.
  • H.1.3 Dynamic effects.
  • H.2 Vibrations in along-wind direction induced by gusts.
  • H.2.1 Spectral methods.
  • a) Mechanical amplification function.
  • b) Spectral density of the system response.
  • H.2.2 Static equivalent force method based on stochastic loading.
  • H.2.3 Static equivalent force method based on deterministic loading.
  • H.2.4 Remedial measures.
  • H.3 Vibrations in along-wind direction induced by buffeting.
  • H.4 Vibrations in across-wind direction induced by vortex-shedding.
  • H.4.1 Single structures.
  • H.4.2 Several structures one behind another.
  • H.4.3 Conical structures.
  • H.4.4 Vibrations of shells.
  • H.5 Vibrations in across-wind direction: Galloping.
  • H.6 Vibrations in across-wind direction: flutter.
  • H.7 Damping of high and slender RC structures subjected to wind.
  • I Human response to vibrations.
  • I.1 Introduction.
  • I.2 Codes of practice.
  • I.2.1 ISO 2631.
  • I.2.2 DIN 4150/2.
  • J Building response to vibrations.
  • J.1 General.
  • J.2 Examples of recommended limit values.
  • References to the Appendices.
  • List of Codes and Standards.