
×
Algebraic Geometry and Singularities
herausgegeben von Antonio Campillo Lopez und Luis Narvaez MacarroInhaltsverzeichnis
- I Resolution of Singularities.
- Désingularisation en dimension 3 et caractéristique p.
- 1 Différentes notions de désingularisation.
- 2 Première réduction.
- 3 Deuxième réduction, construction d’un modèle projectif.
- 4 Troisième réduction, birationnel devient projectif.
- 5 Final: Morphisme projectif birationnel devient désingularisation.
- Sur l’espace des courbes tracées sur une singularité.
- 1 Introduction.
- 2 Structure pro-algébrique de Tespace des courbes et la fonction de M. Art in d’une singularité.
- 3 Families de courbes (selon J. Nash) et désingularisations.
- 4 Courbes sur une singularité isolée d’hypersurface.
- 5 Courbes lisses sur une singularité de surface.
- 6 Deux exemples.
- Blowing up acyclic graphs and geometrical configurations.
- 2 Basic concepts and notations.
- 3 Blowing up acyclic graphs.
- 4 Graphic representation of the blowing up for a geometric configuration.
- 5 Geometric modification for acyclic graphs.
- On a Newton polygon approach to the uniformization of singularities of characteristic p.
- 2 Newton polygon and uniformization for ?1 ? n ? 1.
- 3 Jumping lemma and Uniformization for ?1 = n ? 2.
- 4 The classification of 3-dimensional singularities and uniformization for ?2 ? 3 or ?2 = $${\pi _{\mathop 2\limits^ * }} \geqslant 2$$.
- 5 Uniformization for ?2 = 2 and $${\pi _{\mathop 2\limits^ * }}$$ = 1.
- 6 Uniformization for ?2 = 1.
- Geometry of plane curves via toroidal resolution.
- 2 Toric blowing-up and a tower of toric blowing-ups.
- 3 Dual Newton diagram and an admissible toric blowing-up.
- 4 Resolution complexity.
- 5 Characteristic power and Puiseux Pairs.
- 6 The Puiseux pairs of normal slice curves.
- 7 Geometry of plane curves via a toroidal resolution.
- 8 Iterated generic hyperplane section curves.
- to the algorithm of resolution.
- 2 Stating the problem of resolution of singularities.
- 3 Auxiliary result: Idealistic pairs.
- 4 Constructive resolutions.
- 5 The language of groves and the problem of patching.
- 6 Examples.
- II Complex Singularities and Differential Systems.
- Polarity with respect to a foliation.
- 2 Preliminaries on linear systems.
- 3 The polarity map.
- 4 Plücker’s formula.
- 5 The net of polars.
- 6 Some calculus.
- On moduli spaces of semiquasihomogeneous singularities.
- 2 Versal µ-constant deformations and kernel of Kodaira-Spencer map.
- 3 Existence of a geometric quotient for fixed Hilbert function of the Tjurina algebra.
- 4 The automorphism group of semi Brieskorn singularities.
- 5 Problems.
- Stratification Properties of Constructible Sets.
- 2 Grassmann blowing-up.
- 3 Analytically constructible sets.
- 4 An application: the Henry-Merle Proposition.
- 5 Canonical stratification.
- On the linearization problem and some questions for webs in ?2.
- 1 Introduction in the form of a survey.
- 2 Linearization of webs in (?2,0).
- 3 Geometry of the abelian relation space and the linearization problem in the maximum rank case.
- 4 Some questions on wrebs in ?2.
- Globalization of Admissible Deformations.
- 2 Compactification.
- 3 Globalization of deformations.
- Caractérisation géométrique de l’existence du polynôme de Bernstein relatif.
- 1 Polynôme de Bernstein relatif.
- 2 DX×T Module holonome régulier relativement cohérent.
- Le Polygone de Newton d’un DX-module.
- 2 Le cas d’une variable.
- 3 La catégorie des faisceaux pervers.
- 4 Le faisceau d’irrégularité et le cycle d’irrégularité.
- 5 La filtration du faisceau d’irrégularité.
- 6 Le poly gone de Newton d’un DX-module.
- 7 Sur l’existence d’une équation fonctionnelle régulière.
- How good are real pictures?.
- 2 Comparison of real and complex discriminants and images.
- 3 Codimension 1 germs.
- 4 Good real forms and their perturbations.
- 5 Bad real pictures.
- Weighted homogeneous complete intersections.
- 2 Notation.
- 3 Ideals and C-equivalence.
- 4 Submodules.
- 5 K-equivalence.
- 6 Combinatorial arguments.
- 7 A-equivalence.
- 8 Other ground fields.
- III Curves and Surfaces.
- Degree 8 and genus 5 curves in ?3 and the Horrocks-Mumford bundle.
- 1 Construction of curves of degree 8 and genus 5 on a Kummer surface S ? ?3.
- 2 Barth’s Construction.
- 3 A generic curve of degree 8 and genus 5 in ?3.
- Irreducible Polynomials of k((X))[Y].
- 2 Reduction of the Problem.
- 3 Some Maximal Ideals of k? X?[Y].
- 4 Irreducibility Criterion for Monic Polynomials of k? X?[Y].
- 5 Some Ideas to Compute V[n/2](P).
- Examples of Abelian Surfaces with Polarization type (1,3).
- 1 Abstract.
- 2 Introduction.
- 3 Preliminaries.
- 4 First examples: products of elliptic curves.
- 5 The two-dimensional families of T-invariant quartic surfaces.
- 6 The Family FAE.
- 7 The Family t?1(L0, 1, 2).
- 8 The Family FAB ? TAE.
- Semigroups and Clusters at Infinity.
- 2 The concept of approximant.
- 3 Curves associated to a semigroup.
- 4 A family of examples.
- Cubic surfaces with double points in positive characteristic.
- 2 Two characterizations of rational double points.
- 3 Singularities and normal forms.
- On the classification of reducible curve singularities.
- 1 Reducible curve singularities.
- 2 Decomposable curves.
- 3 Classification.
- 4 Deformations and smoothings.