Algebraic Geometry and Singularities | ISBN 9783764353346

Algebraic Geometry and Singularities

herausgegeben von Antonio Campillo Lopez und Luis Narvaez Macarro
Mitwirkende
Herausgegeben vonAntonio Campillo Lopez
Herausgegeben vonLuis Narvaez Macarro
Buchcover Algebraic Geometry and Singularities  | EAN 9783764353346 | ISBN 3-7643-5334-1 | ISBN 978-3-7643-5334-6

Algebraic Geometry and Singularities

herausgegeben von Antonio Campillo Lopez und Luis Narvaez Macarro
Mitwirkende
Herausgegeben vonAntonio Campillo Lopez
Herausgegeben vonLuis Narvaez Macarro

Inhaltsverzeichnis

  • I Resolution of Singularities.
  • Désingularisation en dimension 3 et caractéristique p.
  • 1 Différentes notions de désingularisation.
  • 2 Première réduction.
  • 3 Deuxième réduction, construction d’un modèle projectif.
  • 4 Troisième réduction, birationnel devient projectif.
  • 5 Final: Morphisme projectif birationnel devient désingularisation.
  • Sur l’espace des courbes tracées sur une singularité.
  • 1 Introduction.
  • 2 Structure pro-algébrique de Tespace des courbes et la fonction de M. Art in d’une singularité.
  • 3 Families de courbes (selon J. Nash) et désingularisations.
  • 4 Courbes sur une singularité isolée d’hypersurface.
  • 5 Courbes lisses sur une singularité de surface.
  • 6 Deux exemples.
  • Blowing up acyclic graphs and geometrical configurations.
  • 2 Basic concepts and notations.
  • 3 Blowing up acyclic graphs.
  • 4 Graphic representation of the blowing up for a geometric configuration.
  • 5 Geometric modification for acyclic graphs.
  • On a Newton polygon approach to the uniformization of singularities of characteristic p.
  • 2 Newton polygon and uniformization for ?1 ? n ? 1.
  • 3 Jumping lemma and Uniformization for ?1 = n ? 2.
  • 4 The classification of 3-dimensional singularities and uniformization for ?2 ? 3 or ?2 = $${\pi _{\mathop 2\limits^ * }} \geqslant 2$$.
  • 5 Uniformization for ?2 = 2 and $${\pi _{\mathop 2\limits^ * }}$$ = 1.
  • 6 Uniformization for ?2 = 1.
  • Geometry of plane curves via toroidal resolution.
  • 2 Toric blowing-up and a tower of toric blowing-ups.
  • 3 Dual Newton diagram and an admissible toric blowing-up.
  • 4 Resolution complexity.
  • 5 Characteristic power and Puiseux Pairs.
  • 6 The Puiseux pairs of normal slice curves.
  • 7 Geometry of plane curves via a toroidal resolution.
  • 8 Iterated generic hyperplane section curves.
  • to the algorithm of resolution.
  • 2 Stating the problem of resolution of singularities.
  • 3 Auxiliary result: Idealistic pairs.
  • 4 Constructive resolutions.
  • 5 The language of groves and the problem of patching.
  • 6 Examples.
  • II Complex Singularities and Differential Systems.
  • Polarity with respect to a foliation.
  • 2 Preliminaries on linear systems.
  • 3 The polarity map.
  • 4 Plücker’s formula.
  • 5 The net of polars.
  • 6 Some calculus.
  • On moduli spaces of semiquasihomogeneous singularities.
  • 2 Versal µ-constant deformations and kernel of Kodaira-Spencer map.
  • 3 Existence of a geometric quotient for fixed Hilbert function of the Tjurina algebra.
  • 4 The automorphism group of semi Brieskorn singularities.
  • 5 Problems.
  • Stratification Properties of Constructible Sets.
  • 2 Grassmann blowing-up.
  • 3 Analytically constructible sets.
  • 4 An application: the Henry-Merle Proposition.
  • 5 Canonical stratification.
  • On the linearization problem and some questions for webs in ?2.
  • 1 Introduction in the form of a survey.
  • 2 Linearization of webs in (?2,0).
  • 3 Geometry of the abelian relation space and the linearization problem in the maximum rank case.
  • 4 Some questions on wrebs in ?2.
  • Globalization of Admissible Deformations.
  • 2 Compactification.
  • 3 Globalization of deformations.
  • Caractérisation géométrique de l’existence du polynôme de Bernstein relatif.
  • 1 Polynôme de Bernstein relatif.
  • 2 DX×T Module holonome régulier relativement cohérent.
  • Le Polygone de Newton d’un DX-module.
  • 2 Le cas d’une variable.
  • 3 La catégorie des faisceaux pervers.
  • 4 Le faisceau d’irrégularité et le cycle d’irrégularité.
  • 5 La filtration du faisceau d’irrégularité.
  • 6 Le poly gone de Newton d’un DX-module.
  • 7 Sur l’existence d’une équation fonctionnelle régulière.
  • How good are real pictures?.
  • 2 Comparison of real and complex discriminants and images.
  • 3 Codimension 1 germs.
  • 4 Good real forms and their perturbations.
  • 5 Bad real pictures.
  • Weighted homogeneous complete intersections.
  • 2 Notation.
  • 3 Ideals and C-equivalence.
  • 4 Submodules.
  • 5 K-equivalence.
  • 6 Combinatorial arguments.
  • 7 A-equivalence.
  • 8 Other ground fields.
  • III Curves and Surfaces.
  • Degree 8 and genus 5 curves in ?3 and the Horrocks-Mumford bundle.
  • 1 Construction of curves of degree 8 and genus 5 on a Kummer surface S ? ?3.
  • 2 Barth’s Construction.
  • 3 A generic curve of degree 8 and genus 5 in ?3.
  • Irreducible Polynomials of k((X))[Y].
  • 2 Reduction of the Problem.
  • 3 Some Maximal Ideals of k? X?[Y].
  • 4 Irreducibility Criterion for Monic Polynomials of k? X?[Y].
  • 5 Some Ideas to Compute V[n/2](P).
  • Examples of Abelian Surfaces with Polarization type (1,3).
  • 1 Abstract.
  • 2 Introduction.
  • 3 Preliminaries.
  • 4 First examples: products of elliptic curves.
  • 5 The two-dimensional families of T-invariant quartic surfaces.
  • 6 The Family FAE.
  • 7 The Family t?1(L0, 1, 2).
  • 8 The Family FAB ? TAE.
  • Semigroups and Clusters at Infinity.
  • 2 The concept of approximant.
  • 3 Curves associated to a semigroup.
  • 4 A family of examples.
  • Cubic surfaces with double points in positive characteristic.
  • 2 Two characterizations of rational double points.
  • 3 Singularities and normal forms.
  • On the classification of reducible curve singularities.
  • 1 Reducible curve singularities.
  • 2 Decomposable curves.
  • 3 Classification.
  • 4 Deformations and smoothings.