Design Patterns für Machine Learning von Valliappa Lakshmanan | Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps – Best Practices für die gesamte ML-Pipeline | ISBN 9783960091646

Design Patterns für Machine Learning

Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps – Best Practices für die gesamte ML-Pipeline

von Valliappa Lakshmanan, Sara Robinson und Michael Munn, aus dem Englischen übersetzt von Frank Langenau
Mitwirkende
Autor / AutorinValliappa Lakshmanan
Autor / AutorinSara Robinson
Autor / AutorinMichael Munn
Übersetzt vonFrank Langenau
Buchcover Design Patterns für Machine Learning | Valliappa Lakshmanan | EAN 9783960091646 | ISBN 3-96009-164-8 | ISBN 978-3-96009-164-6
Inhaltsverzeichnis
Leseprobe
- Data Scientists - Data Engineers - Machine Learning Engineers

Design Patterns für Machine Learning

Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps – Best Practices für die gesamte ML-Pipeline

von Valliappa Lakshmanan, Sara Robinson und Michael Munn, aus dem Englischen übersetzt von Frank Langenau
Mitwirkende
Autor / AutorinValliappa Lakshmanan
Autor / AutorinSara Robinson
Autor / AutorinMichael Munn
Übersetzt vonFrank Langenau

Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben

  • Behandelt alle Phasen der ML-Produktpipeline
  • Klar strukturierter Aufbau, der dafür sorgt, dass sich Konzepte und Zusammenhänge rasch erschließen
  • Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte

Die Design Patterns in diesem Buch zeigen praxiserprobte Lösungen für wiederkehrende Aufgaben im Machine Learning. Die Autor: innen – ML-Experten bei Google – beschreiben Methoden, die Data Scientists helfen, typische Probleme im gesamten ML-Prozess zu bewältigen. Die Entwurfsmuster verdichten die Erfahrungen von Hunderten von Expert: innen zu klar strukturierten, zugänglichen Best Practices.

Das Buch bietet detaillierte Erläuterungen zu 30 Mustern für die Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Zu jedem Muster erhalten Sie eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen sowie Empfehlungen, welche Technik die beste für Ihre Problemstellung ist.

Erfahren Sie, wie Sie:

  • Herausforderungen beim Trainieren, Bewerten und Deployen von ML-Modellen erkennen und überwinden
  • Daten für verschiedene ML-Modelltypen mit Einbettungen, Feature Crosses und mehr darstellen
  • den richtigen Modelltyp für bestimmte Fragestellungen auswählen
  • eine robuste Trainingsschleife mit Checkpoints, Verteilungsstrategie und Hyperparameter-Tuning erstellen
  • skalierbare ML-Systeme deployen, die bei erneutem Training aktuelle Daten berücksichtigen
  • Modellvorhersagen für Stakeholder interpretieren
  • Modellgenauigkeit, Reproduzierbarkeit, Resilienz und Fairness verbessern