Applied Theory of Functional Differential Equations von V. Kolmanovskii | ISBN 9789048142156

Applied Theory of Functional Differential Equations

von V. Kolmanovskii und A. Myshkis
Mitwirkende
Autor / AutorinV. Kolmanovskii
Autor / AutorinA. Myshkis
Buchcover Applied Theory of Functional Differential Equations | V. Kolmanovskii | EAN 9789048142156 | ISBN 90-481-4215-6 | ISBN 978-90-481-4215-6

Applied Theory of Functional Differential Equations

von V. Kolmanovskii und A. Myshkis
Mitwirkende
Autor / AutorinV. Kolmanovskii
Autor / AutorinA. Myshkis

Inhaltsverzeichnis

  • 1. Models.
  • 1. Formal prerequisites.
  • 2. Aftereffect in mechanics.
  • 3. Hereditary phenomena in physics.
  • 4. Models with delays in technical problems.
  • 5. Aftereffect in biology.
  • 6. Aftereffect in medicine.
  • 7. Aftereffect in economy and other sciences.
  • 2. General theory.
  • 1. Introduction. Method of steps.
  • 2. Cauchy problem for RDEs.
  • 3. Cauchy problem for NDEs.
  • 4. Differential inclusions of retarded type (RDIs).
  • 5. General linear equations with aftereffect.
  • 6. Linear autonomous equations.
  • 7. Hopf bifurcation.
  • 8. Stocnastic retarded differential equations (SRDEs).
  • 3. Stability of retarded differential equations.
  • 1. Liapunov’s direct method.
  • 2. Linear autonomous equations.
  • 4. Stability of neutral type functional differential equations.
  • 1. Direct Liapunov’s method.
  • 2. Stability of linear autonomous equations.
  • 5. Stability of stochastic functional differential equations.
  • 1. Statement of the problem.
  • 2. Liapunov’s direct method.
  • 3. Boundedness of moments of solutions.
  • 6. Problems of control for deterministic FDEs.
  • 1. The dynamic programming method for deterministic equations. Bellman’s equation.
  • 2. Linear quadratic problems.
  • 3. Optimal control of bilinear hereditary systems.
  • 4. Control problems with phase constraint formula.
  • 5. Necessary optimality conditions.
  • 7. Optimal control of stochastic delay systems.
  • 1. Dynamic programming method for controlled stochastic hereditary processes.
  • 2. The linear quadratic problem.
  • 3. Approximate optimal control for systems with small parameters.
  • 4. Another approach to the problem of optimal synthesis control.
  • 8. State estimates of stochastic systems with delay.
  • 1. Filtering of Gaussian processes.
  • 2. Filtering of solutions of Itô equations with delay.