Foundations of Generic Optimization von M. Iglesias | Volume 1: A Combinatorial Approach to Epistasis | ISBN 9789048169221

Foundations of Generic Optimization

Volume 1: A Combinatorial Approach to Epistasis

von M. Iglesias, B. Naudts, A. Verschoren und C. Vidal, herausgegeben von R. Lowen und A. Verschoren
Mitwirkende
Autor / AutorinM. Iglesias
Herausgegeben vonR. Lowen
Autor / AutorinB. Naudts
Herausgegeben vonA. Verschoren
Autor / AutorinA. Verschoren
Autor / AutorinC. Vidal
Buchcover Foundations of Generic Optimization | M. Iglesias | EAN 9789048169221 | ISBN 90-481-6922-4 | ISBN 978-90-481-6922-1

From the reviews:

„This book deals with combinatorial aspects of epistasis, especially normalized epistasis, a concept that exists in genetics and evolutionary algorithms. It starts with the theory of evolutionary algorithms. This illustrative introduction makes the book readable independent on other textbooks. … The book is very well written and presents many important and useful results. … It shows also that difficult practical problems can only be efficiently solved by a combination of Modelling, Mathematics and Computing.“ (Christian Posthoff, Zentralblatt MATH, Vol. 1108 (10), 2007)

Foundations of Generic Optimization

Volume 1: A Combinatorial Approach to Epistasis

von M. Iglesias, B. Naudts, A. Verschoren und C. Vidal, herausgegeben von R. Lowen und A. Verschoren
Mitwirkende
Autor / AutorinM. Iglesias
Herausgegeben vonR. Lowen
Autor / AutorinB. Naudts
Herausgegeben vonA. Verschoren
Autor / AutorinA. Verschoren
Autor / AutorinC. Vidal
Only book dealing exclusively with the notion of epistasis in the framework of evelotionary algorithms and genetic algorithms in particular Completely self-contained (even includes a mathematical refresher intended for users with more computer science than math background) Chapter 0 is intended for neophytes in the field of genetic algorithms and optimization theory; it provides in a very readable way the basics of genetic algorithms Provides new questions (and answers) in the field between combinatorics and optimization theory, between discrete and mathematics and theoretical computer science, between linear algebra and complexity theory