Algebraic Systems of Equations and Computational Complexity Theory von Z. Wang | ISBN 9789401043427

Algebraic Systems of Equations and Computational Complexity Theory

von Z. Wang, S. Xu und T. Gao
Mitwirkende
Autor / AutorinZ. Wang
Autor / AutorinS. Xu
Autor / AutorinT. Gao
Buchcover Algebraic Systems of Equations and Computational Complexity Theory | Z. Wang | EAN 9789401043427 | ISBN 94-010-4342-6 | ISBN 978-94-010-4342-7

Algebraic Systems of Equations and Computational Complexity Theory

von Z. Wang, S. Xu und T. Gao
Mitwirkende
Autor / AutorinZ. Wang
Autor / AutorinS. Xu
Autor / AutorinT. Gao

Inhaltsverzeichnis

  • Chpater 1 Kuhn’s algorithm for algebraic equations.
  • §1. Triangulation and labelling.
  • §2. Complementary pivoting algorithm.
  • §3. Convergence, I.
  • §4. Convergence, II.
  • 2 Efficiency of Kuhn’s algorithm.
  • §1. Error estimate.
  • §2. Cost estimate.
  • §3. Monotonicity problem.
  • §4. Results on monotonicity.
  • 3 Newton method and approximate zeros.
  • §1. Approximate zeros.
  • §2. Coefficients of polynomials.
  • §3. One step of Newton iteration.
  • §4. Conditions for approximate zeros.
  • 4 A complexity comparison of Kuhn’s algorithm and Newton method.
  • §1. Smale’s work on the complexity of Newton method.
  • §2. Set of bad polynomials and its volume estimate.
  • §3. Locate approximate zeros by Kuhn’s algorithm.
  • §4. Some remarks.
  • 5 Incremental algorithms and cost theory.
  • §1. Incremental algorithms Ih, f.
  • §2. Euler’s algorithm is of efficiency k.
  • §3. Generalized approximate zeros.
  • §4. Ek iteration.
  • §5. Cost theory of Ek as an Euler’s algorithm.
  • §6. Incremental algorithms of efficiency k.
  • 6 Homotopy algorithms.
  • §1. Homotopies and Index Theorem.
  • §2. Degree and its invariance.
  • §3. Jacobian of polynomial mappings.
  • §4. Conditions for boundedness of solutions.
  • 7 Probabilistic discussion on zeros of polynomial mappings.
  • §1. Number of zeros of polynomial mappings.
  • §2. Isolated zeros.
  • §3. Locating zeros of analytic functions in bounded regions.
  • 8 Piecewise linear algorithms.
  • §1. Zeros of PL mapping and their indexes.
  • §2. PL approximations.
  • §3. PL homotopy algorithms work with probability one.
  • References.
  • Acknowledgments.