Symmetric and G-algebras von Gregory Karpilovsky | With Applications to Group Representations | ISBN 9789401067560

Symmetric and G-algebras

With Applications to Group Representations

von Gregory Karpilovsky
Buchcover Symmetric and G-algebras | Gregory Karpilovsky | EAN 9789401067560 | ISBN 94-010-6756-2 | ISBN 978-94-010-6756-0

Symmetric and G-algebras

With Applications to Group Representations

von Gregory Karpilovsky

Inhaltsverzeichnis

  • 1. Preliminaries.
  • 1. Notation and terminology.
  • 2. Artinian, noetherian and semisimple modules.
  • 3. Semisimple modules.
  • 4. The radical and socle of modules and rings.
  • 5. The Krull-Schmidt theorem.
  • 6. Matrix rings.
  • 7. The Wedderburn-Artin theorem.
  • 8. Tensor products.
  • 9. Croup algebras.
  • 2. Frobenius and symmetric algebras.
  • 1. Definitions and elementary properties.
  • 2. Frobenius crossed products.
  • 3. Symmetric crossed products.
  • 4. Symmetric endomorphism algebras.
  • 5. Projective covers and injective hulls.
  • 6. Classical results.
  • 7. Frobenius uniserial algebras.
  • 8. Characterizations of Frobenius algebras.
  • 9. Characters of symmetric algebras.
  • 10. Applications to projective modular representations.
  • 11. Külshammer’s theorems.
  • 12. Applications.
  • 3. Symmetric local algebras.
  • 1. Symmetric local algebras A with dimFZ(A) ? 4.
  • 2. Some technical lemmas.
  • 3. Symmetric local algebras A with dimFZ(A) = 5.
  • 4. Applications to modular representations.
  • 4. G-algebras and their applications.
  • 1. The trace map.
  • 2. Permutation G-algebras.
  • 3. Algebras over complete noetherian local rings.
  • 4. Defect groups in G-algebras.
  • 5. Relative projective and injective modules.
  • 6. Vertices as defect groups.
  • 7. The G-algebra EndR((1H)G).
  • 8. An application: The Robinson’s theorem.
  • 9. The Brauer morphism.
  • 10. Points and pointed groups.
  • 11. Interior G-algebras.
  • 12. Bilinear forms on G-algebras.