
×
Inhaltsverzeichnis
- 1. Preliminaries.
- 1. Notation and terminology.
- 2. Artinian, noetherian and semisimple modules.
- 3. Semisimple modules.
- 4. The radical and socle of modules and rings.
- 5. The Krull-Schmidt theorem.
- 6. Matrix rings.
- 7. The Wedderburn-Artin theorem.
- 8. Tensor products.
- 9. Croup algebras.
- 2. Frobenius and symmetric algebras.
- 1. Definitions and elementary properties.
- 2. Frobenius crossed products.
- 3. Symmetric crossed products.
- 4. Symmetric endomorphism algebras.
- 5. Projective covers and injective hulls.
- 6. Classical results.
- 7. Frobenius uniserial algebras.
- 8. Characterizations of Frobenius algebras.
- 9. Characters of symmetric algebras.
- 10. Applications to projective modular representations.
- 11. Külshammer’s theorems.
- 12. Applications.
- 3. Symmetric local algebras.
- 1. Symmetric local algebras A with dimFZ(A) ? 4.
- 2. Some technical lemmas.
- 3. Symmetric local algebras A with dimFZ(A) = 5.
- 4. Applications to modular representations.
- 4. G-algebras and their applications.
- 1. The trace map.
- 2. Permutation G-algebras.
- 3. Algebras over complete noetherian local rings.
- 4. Defect groups in G-algebras.
- 5. Relative projective and injective modules.
- 6. Vertices as defect groups.
- 7. The G-algebra EndR((1H)G).
- 8. An application: The Robinson’s theorem.
- 9. The Brauer morphism.
- 10. Points and pointed groups.
- 11. Interior G-algebras.
- 12. Bilinear forms on G-algebras.