Applied and Industrial Mathematics | Venice - 1, 1989 | ISBN 9789401073516

Applied and Industrial Mathematics

Venice - 1, 1989

herausgegeben von Renato Spigler
Buchcover Applied and Industrial Mathematics  | EAN 9789401073516 | ISBN 94-010-7351-1 | ISBN 978-94-010-7351-6

Applied and Industrial Mathematics

Venice - 1, 1989

herausgegeben von Renato Spigler

Inhaltsverzeichnis

  • I: Invited Papers.
  • - C. Cercignani, “Physical Problems and Rigorous Results in Kinetic Theory.
  • - A. Chorin, “Statistical Mechanics of Vortex Filaments” (abstract).
  • - Feng Kang, “The Hamiltonian Way for Computing Hamiltonian Dynamics”.
  • - C. W. Gear (with Fen-Lien Juang), “The Speed of Waveform Methods for ODEs”.
  • - J. B. Keller, “Diffusively Coupled Dynamical Systems”.
  • - P. D. Lax, “Deterministic Turbulence” (extended abstract).
  • - J. L. Lions, “Exact Controllability for Distributed Systems. Some Trends and Some Problems”.
  • - V. P. Maslov, “Beginning of Weakly Anisotropic Turbulence”.
  • - S. K. Mitter, “Markov Random Fields, Stochastic Quantization and Image Analysis”.
  • - H. Neunzert (with F. Gropengießer and J. Struckmeier),. “Computational Methods for the Boltzmann equation”.
  • - J. R. Ockendon, “A Class of Moving Boundary Problems Arising in Industry”.
  • - M. Primicerio, “Systems with Non-Fading Memory Encountered in the Modellization of Industrial Problems”.
  • - M. Pulvirenti, “A Stochastic Particle System Modelling the Broadwell Equation”.
  • -A. Quarteroni “(with A. Valli), “Theory and Application of Steklov-Poincare Operators for Boundary-Value Problems”.
  • - S. Rionero (with B. Straughan), “On the Problem of Natural Convection”.
  • II: Selected Contributed Papers.
  • 1. Mathematical Modelling in Fluid Mechanics.
  • - J. A. Nohel, “Non-Newtonian Phenomena in Shear Flow”.
  • - O. Pironneau (with C. Bernardi, M. O. Bristeau and M. G. Vallet), “Numerical Analysis for Compressible Viscous Isothermal Stationary Flows”.
  • - E. G. Virga (with D. Roccato), “Drops of Nematic Liquid Crystal Floating on a Fluid”.
  • 2. Nonlinear waves.
  • - S. Venakides, “The Korteweg-de Vries Equation with Small Dispersion: HigherOrder Lax-Levermore Theory”.
  • - P. L. Christiansen, “Solitons in Optical Fibres”.
  • 3. Wave Propagation in Random Media.
  • - R. Burridge, “Waves in Finely Layered Media”.
  • - B. S. White (with Balan Nair), “Stochastic Geometry and the Intensity of Random Waves”.
  • - V. I. Klyatskin, “Plane Waves in Layered Random Media. The Role of Boundary Conditions”.
  • 4. Transport Phenomena.
  • - P. A. Markowich (with A. Arnold), “Quantum Transport Models for Semiconductors”.
  • - G. C. Pomraning, “Particle Transport in Random Media”.
  • 5. Inverse Problems in the Applied Sciences.
  • - G. Alessandrini, “Determining Conductivity by Boundary Measurements, the Stability Issue”.
  • - G. Caviglia (with A. Morro), “Scattering Problems for Acoustic Waves”.
  • - W. L. Dunn (with A. M. Yacout and F. O’Foghludha), “The Use of Single-Scatter Models in Medical Radiation Applications”.
  • 6. Mathematical Modelling of Industrial Problems.
  • - Li Tatsien (with Tan Yongji, Pen Yuejun and Li Hailong)“Mathematical Methods for the SP Well-Logging”.
  • - C. D. Hill (with P. Susskind and V. Giambalvo), “Effective Computation of the Symmetric Lens”.
  • - L. Brusa, “Mathematical Modelling of Structural Industrial Problems: Methodologies and Algorithms”.
  • Author Index.