Large-Scale Inverse Problems and Quantification of Uncertainty | ISBN 9781119957584

Large-Scale Inverse Problems and Quantification of Uncertainty

herausgegeben von Lorenz Biegler und weiteren
Mitwirkende
Herausgegeben vonLorenz Biegler
Herausgegeben vonGeorge Biros
Herausgegeben vonOmar Ghattas
Herausgegeben vonMatthias Heinkenschloss
Herausgegeben vonDavid Keyes
Herausgegeben vonBani Mallick
Herausgegeben vonLuis Tenorio
Herausgegeben vonBart van Bloemen Waanders
Herausgegeben vonKaren Willcox
Herausgegeben vonYoussef Marzouk
Buchcover Large-Scale Inverse Problems and Quantification of Uncertainty  | EAN 9781119957584 | ISBN 1-119-95758-3 | ISBN 978-1-119-95758-4
Leseprobe

Large-Scale Inverse Problems and Quantification of Uncertainty

herausgegeben von Lorenz Biegler und weiteren
Mitwirkende
Herausgegeben vonLorenz Biegler
Herausgegeben vonGeorge Biros
Herausgegeben vonOmar Ghattas
Herausgegeben vonMatthias Heinkenschloss
Herausgegeben vonDavid Keyes
Herausgegeben vonBani Mallick
Herausgegeben vonLuis Tenorio
Herausgegeben vonBart van Bloemen Waanders
Herausgegeben vonKaren Willcox
Herausgegeben vonYoussef Marzouk
This book focuses on computational methods for large-scalestatistical inverse problems and provides an introduction tostatistical Bayesian and frequentist methodologies. Recent researchadvances for approximation methods are discussed, along with Kalmanfiltering methods and optimization-based approaches to solvinginverse problems. The aim is to cross-fertilize the perspectives ofresearchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.
The solution to large-scale inverse problems critically dependson methods to reduce computational cost. Recent research approachestackle this challenge in a variety of different ways. Many of thecomputational frameworks highlighted in this book build uponstate-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-basedapproximations, as well as exploiting the machinery for large-scaledeterministic optimization through adjoint and other sensitivityanalysis methods.
Key Features:
* Brings together the perspectives of researchers in areasof inverse problems and data assimilation.
* Assesses the current state-of-the-art and identify needsand opportunities for future research.
* Focuses on the computational methods used to analyze andsimulate inverse problems.
* Written by leading experts of inverse problems anduncertainty quantification.
Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.