Degenerate Parabolic Equations von Emmanuele DiBenedetto | ISBN 9781461208952

Degenerate Parabolic Equations

von Emmanuele DiBenedetto
Buchcover Degenerate Parabolic Equations | Emmanuele DiBenedetto | EAN 9781461208952 | ISBN 1-4612-0895-5 | ISBN 978-1-4612-0895-2

Degenerate Parabolic Equations

von Emmanuele DiBenedetto

Inhaltsverzeichnis

  • I. Notation and function spaces.
  • §1. Some notation.
  • §2. Basic facts aboutW1, p(?) andWo1, p(?).
  • §3. Parabolic spaces and embeddings.
  • §4. Auxiliary lemmas.
  • §5. Bibliographical notes.
  • II. Weak solutions and local energy estimates.
  • §1. Quasilinear degenerate or singular equations.
  • §2. Boundary value problems.
  • §3. Local integral inequalities.
  • §4. Energy estimates near the boundary.
  • §5. Restricted structures: the levelskand the constant ?.
  • §6. Bibliographical notes.
  • III. Hölder continuity of solutions of degenerate parabolic equations.
  • §1. The regularity theorem.
  • §2. Preliminaries.
  • §3. The main proposition.
  • §4. The first alternative.
  • §5. The first alternative continued.
  • §6. The first alternative concluded.
  • §7. The second alternative.
  • §8. The second alternative continued.
  • §9. The second alternative concluded.
  • §10. Proof of Proposition 3.1.
  • §11. Regularity up tot= 0.
  • §12. Regularity up toST. Dirichlet data.
  • §13. Regularity atST. Variational data.
  • §14. Remarks on stability.
  • §15. Bibliographical notes.
  • IV. Hölder continuity of solutions of singular parabolic equations.
  • §1. Singular equations and the regularity theorems.
  • §2. The main proposition.
  • §3. Preliminaries.
  • §4. Rescaled iterations.
  • §5. The first alternative.
  • §6. Proof of Lemma 5.1. Integral inequalities.
  • §7. An auxiliary proposition.
  • §8. Proof of Proposition 7.1 when (7.6) holds.
  • §9. Removing the assumption (6.1).
  • §10. The second alternative.
  • §11. The second alternative concluded.
  • §12. Proof of the main proposition.
  • §13. Boundary regularity.
  • §14. Miscellaneous remarks.
  • V. Boundedness of weak solutions.
  • §1. Introduction.
  • §2. Quasilinear parabolic equations.
  • §3. Sup-bounds.
  • §4. Homogeneous structures. 2.
  • §5. Homogeneous structures. The singular case 1 < 2.
  • §6. Energy estimates.
  • §7. Local iterative inequalities.
  • §8. Local iterative inequalities $$
    \left( {p > max\left\{ {1;\frac{{2N}}
    {{N + 2}}} \right\}} \right)
    $$.
  • §9. Global iterative inequalities.
  • §10. Homogeneous structures and $$
    1 < p \leqslant max\left\{ {1;\frac{{2N}}
    {{N + 2}}} \right\}
    $$.
  • §11. Proof of Theorems 3.1 and 3.2.
  • §12. Proof of Theorem 4.1.
  • §13. Proof of Theorem 4.2.
  • §14. Proof of Theorem 4.3.
  • §15. Proof of Theorem 4.5.
  • §16. Proof of Theorems 5.1 and 5.2.
  • §17. Natural growth conditions.
  • §18. Bibliographical notes.
  • VI. Harnack estimates: the casep>2.
  • §2. The intrinsic Harnack inequality.
  • §3. Local comparison functions.
  • §4. Proof of Theorem 2.1.
  • §5. Proof of Theorem 2.2.
  • §6. Global versus local estimates.
  • §7. Global Harnack estimates.
  • §8. Compactly supported initial data.
  • §9. Proof of Proposition 8.1.
  • §10. Proof of Proposition 8.1 continued.
  • §11. Proof of Proposition 8.1 concluded.
  • §12. The Cauchy problem with compactly supported initial data.
  • §13. Bibliographical notes.
  • VII. Harnack estimates and extinction profile for singular equations.
  • §1. The Harnack inequality.
  • §2. Extinction in finite time (bounded domains).
  • §3. Extinction in finite time (in RN).
  • §4. An integral Harnack inequality for all 1   2).
  • §4. Hölder continuity ofDu (the case 1 < 2).
  • §5. Some algebraic Lemmas.
  • §6. Linear parabolic systems with constant coefficients.
  • §7. The perturbation lemma.
  • §8. Proof of Proposition 1.1-(i).
  • §9. Proof of Proposition 1.1-(ii).
  • §10. Proof of Proposition 1.1-(iii).
  • §11. Proof of Proposition 1.1 concluded.
  • §12. Proof of Proposition 1.2-(i).
  • §13. Proof of Proposition 1.2 concluded.
  • §14. General structures.
  • X. Parabolicp-systems: boundary regularity.
  • §2. Flattening the boundary.
  • §3. An iteration lemma.
  • §4. Comparing w and y (the casep> 2).
  • §5. Estimating the local average of |Dw| (the casep> 2).
  • §6. Estimating the local averages of w (the casep> 2).
  • §7. Comparing w and y (the case max $$
    \left\{ {1;\tfrac{{2N}}
    {{N + 2}}} \right\} < p< 2
    $$).
  • §8. Estimating the local average of |Dw|.
  • §9. Bibliographical notes.
  • XI. Non-negative solutions in ? T. The casep>2.
  • §2. Behaviour of non-negative solutions as |x| ? ? and as t ? 0.
  • §3. Proof of (2.4).
  • §4. Initial traces.
  • §5. Estimating |Du|p?1 in ? T.
  • §6. Uniqueness for data inLloc1(RN).
  • §7. Solving the Cauchy problem.
  • §8. Bibliographical notes.
  • XII. Non-negative solutions in ? T. The case 1 The uniqueness theorem.
  • §6. An auxiliary proposition.
  • §7. Proof of the uniqueness theorem.
  • §8. Solving the Cauchy problem.
  • §9. Compactness in the space variables.
  • §10. Compactness in thetvariable.
  • §11. More on the time—compactness.
  • §12. The limiting process.
  • §13. Bounded solutions. A counterexample.
  • §14. Bibliographical notes.