
×
Degenerate Parabolic Equations
von Emmanuele DiBenedettoInhaltsverzeichnis
- I. Notation and function spaces.
- §1. Some notation.
- §2. Basic facts aboutW1, p(?) andWo1, p(?).
- §3. Parabolic spaces and embeddings.
- §4. Auxiliary lemmas.
- §5. Bibliographical notes.
- II. Weak solutions and local energy estimates.
- §1. Quasilinear degenerate or singular equations.
- §2. Boundary value problems.
- §3. Local integral inequalities.
- §4. Energy estimates near the boundary.
- §5. Restricted structures: the levelskand the constant ?.
- §6. Bibliographical notes.
- III. Hölder continuity of solutions of degenerate parabolic equations.
- §1. The regularity theorem.
- §2. Preliminaries.
- §3. The main proposition.
- §4. The first alternative.
- §5. The first alternative continued.
- §6. The first alternative concluded.
- §7. The second alternative.
- §8. The second alternative continued.
- §9. The second alternative concluded.
- §10. Proof of Proposition 3.1.
- §11. Regularity up tot= 0.
- §12. Regularity up toST. Dirichlet data.
- §13. Regularity atST. Variational data.
- §14. Remarks on stability.
- §15. Bibliographical notes.
- IV. Hölder continuity of solutions of singular parabolic equations.
- §1. Singular equations and the regularity theorems.
- §2. The main proposition.
- §3. Preliminaries.
- §4. Rescaled iterations.
- §5. The first alternative.
- §6. Proof of Lemma 5.1. Integral inequalities.
- §7. An auxiliary proposition.
- §8. Proof of Proposition 7.1 when (7.6) holds.
- §9. Removing the assumption (6.1).
- §10. The second alternative.
- §11. The second alternative concluded.
- §12. Proof of the main proposition.
- §13. Boundary regularity.
- §14. Miscellaneous remarks.
- V. Boundedness of weak solutions.
- §1. Introduction.
- §2. Quasilinear parabolic equations.
- §3. Sup-bounds.
- §4. Homogeneous structures. 2.
- §5. Homogeneous structures. The singular case 1 < 2.
- §6. Energy estimates.
- §7. Local iterative inequalities.
- §8. Local iterative inequalities $$
\left( {p > max\left\{ {1;\frac{{2N}}
{{N + 2}}} \right\}} \right)
$$. - §9. Global iterative inequalities.
- §10. Homogeneous structures and $$
1 < p \leqslant max\left\{ {1;\frac{{2N}}
{{N + 2}}} \right\}
$$. - §11. Proof of Theorems 3.1 and 3.2.
- §12. Proof of Theorem 4.1.
- §13. Proof of Theorem 4.2.
- §14. Proof of Theorem 4.3.
- §15. Proof of Theorem 4.5.
- §16. Proof of Theorems 5.1 and 5.2.
- §17. Natural growth conditions.
- §18. Bibliographical notes.
- VI. Harnack estimates: the casep>2.
- §2. The intrinsic Harnack inequality.
- §3. Local comparison functions.
- §4. Proof of Theorem 2.1.
- §5. Proof of Theorem 2.2.
- §6. Global versus local estimates.
- §7. Global Harnack estimates.
- §8. Compactly supported initial data.
- §9. Proof of Proposition 8.1.
- §10. Proof of Proposition 8.1 continued.
- §11. Proof of Proposition 8.1 concluded.
- §12. The Cauchy problem with compactly supported initial data.
- §13. Bibliographical notes.
- VII. Harnack estimates and extinction profile for singular equations.
- §1. The Harnack inequality.
- §2. Extinction in finite time (bounded domains).
- §3. Extinction in finite time (in RN).
- §4. An integral Harnack inequality for all 1 2).
- §4. Hölder continuity ofDu (the case 1 < 2).
- §5. Some algebraic Lemmas.
- §6. Linear parabolic systems with constant coefficients.
- §7. The perturbation lemma.
- §8. Proof of Proposition 1.1-(i).
- §9. Proof of Proposition 1.1-(ii).
- §10. Proof of Proposition 1.1-(iii).
- §11. Proof of Proposition 1.1 concluded.
- §12. Proof of Proposition 1.2-(i).
- §13. Proof of Proposition 1.2 concluded.
- §14. General structures.
- X. Parabolicp-systems: boundary regularity.
- §2. Flattening the boundary.
- §3. An iteration lemma.
- §4. Comparing w and y (the casep> 2).
- §5. Estimating the local average of |Dw| (the casep> 2).
- §6. Estimating the local averages of w (the casep> 2).
- §7. Comparing w and y (the case max $$
\left\{ {1;\tfrac{{2N}}
{{N + 2}}} \right\} < p< 2
$$). - §8. Estimating the local average of |Dw|.
- §9. Bibliographical notes.
- XI. Non-negative solutions in ? T. The casep>2.
- §2. Behaviour of non-negative solutions as |x| ? ? and as t ? 0.
- §3. Proof of (2.4).
- §4. Initial traces.
- §5. Estimating |Du|p?1 in ? T.
- §6. Uniqueness for data inLloc1(RN).
- §7. Solving the Cauchy problem.
- §8. Bibliographical notes.
- XII. Non-negative solutions in ? T. The case 1 The uniqueness theorem.
- §6. An auxiliary proposition.
- §7. Proof of the uniqueness theorem.
- §8. Solving the Cauchy problem.
- §9. Compactness in the space variables.
- §10. Compactness in thetvariable.
- §11. More on the time—compactness.
- §12. The limiting process.
- §13. Bounded solutions. A counterexample.
- §14. Bibliographical notes.