Particles and Fields | ISBN 9781461214106

Particles and Fields

herausgegeben von Gordon W. Semenoff und Luc Vinet
Mitwirkende
Herausgegeben vonGordon W. Semenoff
Herausgegeben vonLuc Vinet
Buchcover Particles and Fields  | EAN 9781461214106 | ISBN 1-4612-1410-6 | ISBN 978-1-4612-1410-6

Particles and Fields

herausgegeben von Gordon W. Semenoff und Luc Vinet
Mitwirkende
Herausgegeben vonGordon W. Semenoff
Herausgegeben vonLuc Vinet

Inhaltsverzeichnis

  • 1 Recent Developments in Affine Toda Quantum Field Theory.
  • 1 Introduction.
  • 2 Classical Integrability and Classical Data.
  • 3 Aspects of the Quantum Field Theory.
  • 4 Dual Pairs.
  • 5 A Word on Solitons.
  • 6 Other Matters.
  • 7 References.
  • 2 A Class of Fermi Liquids.
  • 2 Four-Legged Diagrams.
  • 3 A Single-Slice Fermionic Cluster Expansion.
  • 4 References.
  • 3 Quantum Groups from Path Integrals.
  • 1 Classical Field Theory.
  • 2 Categories, Finite Groups, and Covering Spaces.
  • 3 Generalized Path Integrals.
  • 4 The Quantum Group.
  • 5 References.
  • 4 Half Transfer Matrices in Solvable Lattice Models.
  • 1 The Six-Vertex Model.
  • 2 The Antiferromagnetic Regime.
  • 3 Corner Transfer Matrix.
  • 4 Half Transfer Matrix.
  • 5 Commutation Relations.
  • 6 Correlation Functions.
  • 7 Two-Point Functions.
  • 8 Discussion.
  • 9 References.
  • 5 Matrix Models as Integrable Systems.
  • 2 The Basic Example: Discrete 1-Matrix Model.
  • 3 Generalized Kontsevich Model.
  • 4 Kp/Toda ?-Function in Terms of Free Fermions.
  • 5 ?-Function as a Group-Theoretical Quantity.
  • 6 Conclusion.
  • 6 Localization, Equivariant Cohomology, and Integration Formulas 211.
  • 1 Symplectic Geometry.
  • 2 Equivariant Cohomology.
  • 3 Duistermaat-Heckman Integration Formula.
  • 4 Degeneracies.
  • 5 Equivariant Characteristic Classes.
  • 6 Loop Space.
  • 7 Example: Atiyah-Singer Index Theorem.
  • 8 Duistermaat-Heckman in Loop Space.
  • 9 General Integrable Models.
  • 10 Mathai-Quillen Formalism.
  • 11 Short Review of Morse Theory.
  • 12 Equivariant Mathai-Quillen Formalism.
  • 13 Equivariant Morse Theory.
  • 14 Loop Space and Morse Theory.
  • 15 Loop Space and Equivariant Morse Theory.
  • 16 Poincaré Supersymmetry and Equivariant Cohomology..
  • 17 References.
  • 7 Systems of Calogero-Moser Type.
  • 2 Classical NonrelativisticCalogero-Moser and Toda Systems.
  • 3 Relativistic Versions at the Classical Level.
  • 4 Quantum Calogero-Moser and Toda Systems.
  • 5 Action-Angle Transforms.
  • 6 Eigenfunction Transforms.
  • 8 Discrete Gauge Theories.
  • 1 Broken Symmetry Revisited.
  • 2 Basics.
  • 3 Algebraic Structure.
  • 4 $${\overline D _2}$$ Gauge Theory.
  • 5 Concluding Remarks and Outlook.
  • 6 References.
  • 9 Quantum Hall Fluids as W1+? Minimal Models.
  • 2 Dynamical Symmetry and Kinematics of Incompressible Fluids.
  • 3 Existing Theories of Edge Excitations and Experiments.
  • 4 W1+? Minimal Models.
  • 5 Further Developments.
  • 10 On the Spectral Theory of Quantum Vertex Operators 469 Pavel I. Etingof.
  • 1 Basic Definitions.
  • 2 Spectral Properties of Vertex Operators.
  • 3 The Semi-Infinite Tensor Product Construction.
  • 4 Computation of the Leading Eigenvalue and Eigenvector.