
×
An Introduction to Cryptology
von Henk C.A. van TilborgInhaltsverzeichnis
- 2. Classical Systems.
- 2.1. Caesar, simple substitutions, Vigenère.
- 2.2. The incidence of coincidences.
- 2.3. Vernam, Playfair, Transpositions, Hagelin, Enigma.
- 3. Shift Register Sequences.
- 3.1. Introduction.
- 3.2. Linear feedback shift registers.
- 3.3. Non-linear algorithms.
- 4. Shannon Theory.
- 5. Huffman Codes.
- 6. Des.
- 7. Public Key Cryptography.
- 8. The Discrete Logarithm Problem.
- 8.1. The discrete logarithm system.
- 8.2. How to take discrete logarithms.
- 9. RSA.
- 9.1. The RSA system.
- 9.2. The Solovay and Strassen primality test.
- 9.3. The Cohen and Lenstra primality test.
- 9.4. The Rabin variant.
- 10. The Mceliece System.
- 11. The Knapsack Problem.
- 11.1. The knapsack system.
- 11.2. The Shamir attack.
- 11.3. The Lagarias and Odlyzko attack.
- 12. Threshold Schemes.
- 13. Other Directions.
- Appendix A. Elementary Number Theory.
- A.1. Introduction.
- A.2. Euclid’s Algorithm.
- A.3. Congruences, Fermat, Euler, Chinese Remainder Theorem.
- A.4. Quadratic residues.
- A.5. Möbius inversion formula, the principle of inclusion and exclusion.
- Appendix B. The Theory of Finite Fields.
- B.1. Groups, rings, ideals and fields.
- B.2. Constructions.
- B.3. The number of irreducible polynomials over IFq.
- B.4. The structure of finite fields.
- References.
- Notations.