Optimal Unbiased Estimation of Variance Components von James D. Malley | ISBN 9781461575542

Optimal Unbiased Estimation of Variance Components

von James D. Malley
Buchcover Optimal Unbiased Estimation of Variance Components | James D. Malley | EAN 9781461575542 | ISBN 1-4615-7554-0 | ISBN 978-1-4615-7554-2

Optimal Unbiased Estimation of Variance Components

von James D. Malley

Inhaltsverzeichnis

  • One: The Basic Model and the Estimation Problem.
  • 1.1 Introduction.
  • 1.2 An Example.
  • 1.3 The Matrix Formulation.
  • 1.4 The Estimation Criteria.
  • 1.5 Properties of the Criteria.
  • 1.6 Selection of Estimation Criteria.
  • Two: Basic Linear Technique.
  • 2.1 Introduction.
  • 2.2 The vec and mat Operators.
  • 2.3 Useful Properties of the Operators.
  • Three: Linearization of the Basic Model.
  • 3.1 Introduction.
  • 3.2 The First Linearization.
  • 3.3 Calculation of var(y).
  • 3.4 The Second Linearization of the Basic Model.
  • 3.5 Additional Details of the Linearizations.
  • Four: The Ordinary Least Squares Estimates.
  • 4.1 Introduction.
  • 4.2 The Ordinary Least Squares Estimates: Calculation.
  • 4.3 The Inner Structure of the Linearization.
  • 4.4 Estimable Functions of the Components.
  • 4.5 Further OLS Facts.
  • Five: The Seely-Zyskind Results.
  • 5.1 Introduction.
  • 5.2 The General Gauss-Markov Theorem: Some History and Motivation.
  • 5.3 The General Gauss-Markov Theorem: Preliminaries.
  • 5.4 The General Gauss-Markov Theorem: Statement and Proof.
  • 5.5 The Zyskind Version of the Gauss-Markov Theorem.
  • 5.6 The Seely Condition for Optimal unbiased Estimation.
  • Six: The General Solution to Optimal Unbiased Estimation.
  • 6.1 Introduction.
  • 6.2 A Full Statement of the Problem.
  • 6.3 The Lehmann-Scheffé Result.
  • 6.4 The Two Types of Closure.
  • 6.5 The General Solution.
  • 6.6 An Example.
  • Seven: Background from Algebra.
  • 7.1 Introduction.
  • 7.2 Groups, Rings, Fields.
  • 7.3 Subrings and Ideals.
  • 7.4 Products in Jordan Rings.
  • 7.5 Idempotent and Nilpotent Elements.
  • 7.6 The Radical of an Associative or Jordan Algebra.
  • 7.7 Quadratic Ideals in Jordan Algebras.
  • Eight: The Structure of Semisimple Associative and Jordan Algebras.
  • 8.1 Introduction.
  • 8.2 The First Structure Theorem.
  • 8.3 Simple Jordan Algebras.
  • 8.4 SimpleAssociative Algebras.
  • Nine: The Algebraic Structure of Variance Components.
  • 9.1 Introduction.
  • 9.2 The Structure of the Space of Optimal Kernels.
  • 9.3 The Two Algebras Generated by Sp(?2).
  • 9.4 Quadratic Ideals in Sp(?2).
  • 9.5 Further Properties of the Space of Optimal Kernels.
  • 9.6 The Case of Sp(?2) Commutative.
  • 9.7 Examples of Mixed Model Structure Calculations: The Partially Balanced Incomplete Block Designs.
  • Ten: Statistical Consequences of the Algebraic Structure Theory.
  • 10.1 Introduction.
  • 10.2 The Jordan Decomposition of an Optimal Unbiased Estimate.
  • 10.3 Non-Negative Unbiased Estimation.
  • Concluding Remarks.
  • References.