Cyclotomic Fields II von S. Lang | ISBN 9781468400861

Cyclotomic Fields II

von S. Lang
Buchcover Cyclotomic Fields II | S. Lang | EAN 9781468400861 | ISBN 1-4684-0086-X | ISBN 978-1-4684-0086-1

Cyclotomic Fields II

von S. Lang

Inhaltsverzeichnis

  • Volume II.
  • 10 Measures and Iwasawa Power Series.
  • 1. Iwasawa Invariants for Measures.
  • 2. Application to the Bernoulli Distributions.
  • 3. Class Numbers as Products of Bernoulli Numbers.
  • 4. Divisibility by l Prime to p: Washington’s Theorem.
  • 11 The Ferrero-Washington Theorems.
  • 1. Basic Lemma and Applications.
  • 2. Equidistribution and Normal Families.
  • 3. An Approximation Lemma.
  • 4. Proof of the Basic Lemma.
  • 12 Measures in the Composite Case.
  • 1. Measures and Power Series in the Composite Case.
  • 2. The Associated Analytic Function on the Formal Multiplicative Group.
  • 3. Computation of Lp(l, x) in the Composite Case.
  • 13 Divisibility of Ideal Class Numbers.
  • 1. Iwasawa Invariants in Zp-extensions.
  • 2. CM Fields, Real Subfields, and Rank Inequalities.
  • 3. The l-primary Part in an Extension of Degree Prime to l.
  • 4. A Relation between Certain Invariants in a Cyclic Extension.
  • 5. Examples of Iwasawa.
  • 6. A Lemma of Kummer.
  • 14 p-adic Preliminaries.
  • 1. The p-adic Gamma Function.
  • 2. The Artin-Hasse Power Series.
  • 3. Analytic Representation of Roots of Unity.
  • 15 The Gamma Function and Gauss Sums.
  • 1. The Basic Spaces.
  • 2. The Frobenius Endomorphism.
  • 3. The Dwork Trace Formula and Gauss Sums.
  • 4. Eigenvalues of the Frobenius Endomorphism and the p-adic Gamma Function.
  • 5. p-adic Banach Spaces.
  • 16 Gauss Sums and the Artin-Schreier Curve.
  • 1. Power Series with Growth Conditions.
  • 2. The Artin-Schreier Equation.
  • 3. Washnitzer-Monsky Cohomology.
  • 4. The Frobenius Endomorphism.
  • 17 Gauss Sums as Distributions.
  • 1. The Universal Distribution.
  • 2. The Gauss Sums as Universal Distributions.
  • 3. The L-function at s = 0.
  • 4. The p-adic Partial Zeta Function.