
×
Mathematical Principles of Mechanics and Electromagnetism
Part A: Analytical and Continuum Mechanics
von Chao-cheng WangInhaltsverzeichnis
- of Part A.
- 1. Lagrangian Mechanics of Particles and Rigid Bodies.
- Section 1. Kinematics of Systems of Particles.
- Section 2. Kinematics of a Rigid Body.
- Section 3. Kinematics of Holonomic Systems of Particles and Rigid Bodies.
- Section 4. Dynamical Principles for Particles and Rigid Bodies.
- Section 5. Lagrange’s Equations for Constrained Systems.
- Section 6. Explicit Forms of Lagrange’s Equations.
- 2. Hamiltonian Systems in Phase Space.
- Section 7. Hamilton’s Principle.
- Section 8. Phase Space and Its Canonical Differential Forms.
- Section 9. The Legendre Transformation and the Hamiltonian System I: The Time-Independent Case.
- Section 10. The Legendre Transformation and the Hamiltonian System II: The Time-Dependent Case.
- Section 11. Contact Transformations and the Hamilton-Jacobi Equation.
- Section 12. The Hamilton-Jacobi Theory.
- Section 13. Huygens’ Principle for the Hamilton-Jacobi Equation 72 Appendix. Characteristics of a First-Order Partial Differential Equation.
- 3. Basic Principles of Continuum Mechanics.
- Section 14. Deformations and Motions.
- Section 15. Balance Principles.
- Section 16. Cauchy’s Postulate and the Stress Principle.
- Section 17. Field Equations.
- Section 18. Constitutive Equations.
- Section 19. Some Representation Theorems.
- Section 20. The Energy Principle for Hyperelastic Materials.
- Section 21. Internal Constraints.
- 4. Some Topics in the Statics and Dynamics of Material Bodies.
- Section 22. Homogeneous Simple Material Bodies.
- Section 23. Viscometric Flows of Incompressible Simple Fluids.
- Section 24. Universal Solutions for Isotropic Elastic Solids I: The Compressible Case.
- Section 25. Universal Solutions for Isotropic Elastic Solids II: The Incompressible Case.
- Section 26. Materially Uniform Smooth Elastic Bodies.
- Section27. Material Connections.
- Section 28. Noll’s Equations of Motion.
- Section 29. Inhomogeneous Isotropic Elastic Solid Bodies.
- Selected Reading for Part A.