Spinors in Hilbert Space von Paul Dirac | ISBN 9781475700343

Spinors in Hilbert Space

von Paul Dirac
Buchcover Spinors in Hilbert Space | Paul Dirac | EAN 9781475700343 | ISBN 1-4757-0034-2 | ISBN 978-1-4757-0034-3

Spinors in Hilbert Space

von Paul Dirac
1. Hilbert Space The words „Hilbert space“ here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:. r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.